77 research outputs found
Autoantibodies Against C3bâFunctional Consequences and Disease Relevance
The complement component C3 is at the heart of the complement cascade. It is a complex protein, which generates different functional activated fragments (C3a, C3b, iC3b, C3c, C3d). C3b is a constituent of the alternative pathway C3 convertase (C3bBb), binds multiple regulators, and receptors, affecting thus the functioning of the immune system. The activated forms of C3 are a target for autoantibodies. This review focuses on the discovery, disease relevance, and functional consequences of the anti-C3b autoantibodies. They were discovered about 70 years ago and named immunoconglutinins. They were found after infections and considered convalescent factors. At the end of the twentieth century IgG against C3b were found in systemic lupus erythematosus and recently in lupus nephritis, correlating with the disease severity and flare. Cases of C3 glomerulopathy and immune complex glomerulonephritis were also reported. These antibodies recognize epitopes, shared between C3(H2O)/C3b/iC3b/C3c and have overt functional activity. They correlate with low plasmatic C3 levels in patients. In vitro, they increase the activity of the alternative pathway C3 convertase, without being C3 nephritic factors. They perturb the binding of the negative regulators Complement Receptor 1 and Factor H. The clear functional consequences and association with disease severity warrant further studies to establish the link between the anti-C3b autoantibodies and tissue injury. Comparative studies with such antibodies, found in patients with infections, may help to uncover their origin and epitopes specificity. Patients with complement overactivation due to presence of anti-C3b antibodies may benefit from therapeutic targeting of C3
Complement System Part I ĂąâŹâ Molecular Mechanisms of Activation and Regulation
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors
Complement System Part II: Role in Immunity
International audienceThe complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5bâ9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target
Mutations in Complement Regulatory Proteins Predispose to Preeclampsia: A Genetic Analysis of the PROMISSE Cohort
Jane Salmon and colleagues studied 250 pregnant patients with SLE and/or antiphospholipid antibodies and found an association of risk variants in complement regulatory proteins in patients
who developed preeclampsia, as well as in preeclampsia patients lacking autoimmune disease
Mutations in components of complement influence the outcome of Factor I-associated atypical hemolytic uremic syndrome
Genetic studies have shown that mutations of complement inhibitors such as membrane cofactor protein, Factors H, I, or B and C3 predispose patients to atypical hemolytic uremic syndrome (aHUS). Factor I is a circulating serine protease that inhibits complement by degrading C3b and up to now only a few mutations in the CFI gene have been characterized. In a large cohort of 202 patients with aHUS, we identified 23 patients carrying exonic mutations in CFI. Their overall clinical outcome was unfavorable, as half died or developed end-stage renal disease after their first syndrome episode. Eight patients with CFI mutations carried at least one additional known genetic risk factor for aHUS, such as a mutation in MCP, CFH, C3 or CFB; a compound heterozygous second mutation in CFI; or mutations in both the MCP and CFH genes. Five patients exhibited homozygous deletion of the Factor H-related protein 1 (CFHR-1) gene. Ten patients with aHUS had one mutation in their CFI gene (Factor I-aHUS), resulting in a quantitative or functional Factor I deficiency. Patients with a complete deletion of the CFHR-1 gene had a significantly higher risk of a bad prognosis compared with those with one Factor I mutation as their unique vulnerability feature. Our results emphasize the necessity of genetic screening for all susceptibility factors in patients with aHUS
Heme Drives Susceptibility of Glomerular Endothelium to Complement Overactivation Due to Inefficient Upregulation of Heme Oxygenase-1
Atypical hemolytic uremic syndrome (aHUS) is a severe disease characterized by microvascular endothelial cell (EC) lesions leading to thrombi formation, mechanical hemolysis and organ failure, predominantly renal. Complement system overactivation is a hallmark of aHUS. To investigate this selective susceptibility of the microvascular renal endothelium to complement attack and thrombotic microangiopathic lesions, we compared complement and cyto-protection markers on EC, from different vascular beds, in in vitro and in vivo models as well as in patients. No difference was observed for complement deposits or expression of complement and coagulation regulators between macrovascular and microvascular EC, either at resting state or after inflammatory challenge. After prolonged exposure to hemolysis-derived heme, higher C3 deposits were found on glomerular EC, in vitro and in vivo, compared with other EC in culture and in mice organs (liver, skin, brain, lungs and heart). This could be explained by a reduced complement regulation capacity due to weaker binding of Factor H and inefficient upregulation of thrombomodulin (TM). Microvascular EC also failed to upregulate the cytoprotective heme-degrading enzyme heme-oxygenase 1 (HO-1), normally induced by hemolysis products. Only HUVEC (Human Umbilical Vein EC) developed adaptation to heme, which was lost after inhibition of HO-1 activity. Interestingly, the expression of KLF2 and KLF4âknown transcription factors of TM, also described as possible transcription modulators of HO-1- was weaker in micro than macrovascular EC under hemolytic conditions. Our results show that the microvascular EC, and especially glomerular EC, fail to adapt to the stress imposed by hemolysis and acquire a pro-coagulant and complement-activating phenotype. Together, these findings indicate that the vulnerability of glomerular EC to hemolysis is a key factor in aHUS, amplifying complement overactivation and thrombotic microangiopathic lesions
C3 glomerulonephritis in a patient treated with antiâPD-1 antibody
International audienceImmune checkpoint inhibitors (ICIs) have dramati-cally transformed the treatment of solid tumors. ICIsinduce an immune response against tumoral cells as aresult of the removal of T-cell inhibition [1]. The logicalcounterpart of turning off T-cell inhibitory mechanismsis the onset of immune-related adverse events (irAEs)that affect different organs. Although the most frequentrenal irAE is acute interstitial nephritis [2], we report afirst case of C3 glomerulonephritis (GN) associated withthe use of an antieProgrammed Cell Death 1 (PD-1)humanised antibody
- âŠ