17 research outputs found

    T cell clones specific for hybrid I-A molecules. Discrimination with monoclonal anti-I-A (k) antibodies

    Get PDF
    Alloreactive and soluble antigen-reactive, I-A-restricted T cell clones were examined for their ability to recognize hybrid I-A antigens. Several clones that recognized hybrid I-A(b)/I-A(k) molecules on (C57BL/6 x A/J)F(1) [(B6A)F(1)] spleen cells were studied. We were able to distinguish clones that recognized hybrid I-A molecules of the A(b)(a)A(k)(β) type from those that recognized A(k)(a)A(b)(β) molecules. We reached this conclusion by considering data from three independent types of experiments. (a) Monoclonal antibodies were used to inhibit T cell stimulation. Antibodies 10.2.16 and H116.32 distinguished two mutually exclusive “families” of T cell clones. One group of clones was inhibited by 10-2.16 and not H116.32, the other group exhibited reciprocal inhibition. (b) T cell proliferation was assayed using antigen-presenting cells from B6.C-H-2(bml2) (bml2) and [bml2 × B10.A(4R)]F(1) mice. Because the bml2 strain has a mutation that results in an altered A(b)(β) polypeptide chain (A(bm12)(β)), we reasoned that clones that could recognize the [bm12 × B 10.A(4R)]F(1) cells were recognizing A(b)(a)A(k)(β) molecules. Alternatively, clones not recognizing [bml2 × B10.A(4R)]F(1) cells had specificity for A(k)(a)A(b)(β) molecules. (c) I-A molecules immunoprecipitated from radiolabeled (B6A)F(1) splenocyte extracts were analyzed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These experiments confirmed an earlier report that antibody 10.2.16 recognized determinants on the A(k)(β) chain (12). Antibody H116.32 immunoprecipitated products consistent with recognition of A(k)(a) determinants. Taken together, these three types of results offer conclusive evidence that T cell clones recognizing “hybrid” I-A molecules use either A(b(k)A(k)(β) or A(k)(a)A(b)(β) molecules as recognition or restriction sites. Clones whose proliferation was supported by [bm 12 x B10.A(4R)]F(1) cells and blocked by anti-I-A(k) antibody 10-2.16 recognized A(b)(a)A(k)(β) B molecules. Clones that were blocked by antibody H116.32 and did not recognize [bml2 X B10.A(4R)]F(1) cells use a recognition site(s) on A(b)(a)A(k)(β) molecules. Thus, we can demonstrate both functionally and biochemically that hybrid F(1) I-A molecules of the structure A(k)(a)A(b)(β) and A(b)(a)A(k)(β) both exist on (B6A)F(1) splenocytes and that both configurations are used in immune recognition phenomena

    Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials of immunologic therapies provide opportunities to study the cellular and molecular effects of those therapies and may permit identification of biomarkers of response. When the trials are performed at multiple centers, transport and storage of clinical specimens become important variables that may affect lymphocyte viability and function in blood and tissue specimens. The effect of temperature during storage and shipment of peripheral blood on subsequent processing, recovery, and function of lymphocytes is understudied and represents the focus of this study.</p> <p>Methods</p> <p>Peripheral blood samples (n = 285) from patients enrolled in 2 clinical trials of a melanoma vaccine were shipped from clinical centers 250 or 1100 miles to a central laboratory at the sponsoring institution. The yield of peripheral blood mononuclear cells (PBMC) collected before and after cryostorage was correlated with temperatures encountered during shipment. Also, to simulate shipping of whole blood, heparinized blood from healthy donors was collected and stored at 15°C, 22°C, 30°C, or 40°C, for varied intervals before isolation of PBMC. Specimen integrity was assessed by measures of yield, recovery, viability, and function of isolated lymphocytes. Several packaging systems were also evaluated during simulated shipping for the ability to maintain the internal temperature in adverse temperatures over time.</p> <p>Results</p> <p>Blood specimen containers experienced temperatures during shipment ranging from -1 to 35°C. Exposure to temperatures above room temperature (22°C) resulted in greater yields of PBMC. Reduced cell recovery following cryo-preservation as well as decreased viability and immune function were observed in specimens exposed to 15°C or 40°C for greater than 8 hours when compared to storage at 22°C. There was a trend toward improved preservation of blood specimen integrity stored at 30°C prior to processing for all time points tested. Internal temperatures of blood shipping containers were maintained longer in an acceptable range when warm packs were included.</p> <p>Conclusions</p> <p>Blood packages shipped overnight by commercial carrier may encounter extreme seasonal temperatures. Therefore, considerations in the design of shipping containers should include protecting against extreme ambient temperature deviations and maintaining specimen temperature above 22°C or preferably near 30°C.</p

    Functional similarities between pigeon \u27milk\u27 and mammalian milk : induction of immune gene expression and modification of the microbiota

    Get PDF
    Pigeon &lsquo;milk&rsquo; and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon &lsquo;milk&rsquo;. Therefore, using a chicken model, we investigated the effect of pigeon &lsquo;milk&rsquo; on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon &lsquo;milk&rsquo; had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon &lsquo;milk&rsquo;-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon &lsquo;milk&rsquo;-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon &lsquo;milk&rsquo;, as well as being directly seeded by bacteria present in pigeon &lsquo;milk&rsquo;. Our results demonstrate that pigeon &lsquo;milk&rsquo; has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon &lsquo;lactation&rsquo; and mammalian lactation evolved independently but resulted in similarly functional products
    corecore