431 research outputs found
Overconstrained estimates of neutrinoless double beta decay within the QRPA
Estimates of nuclear matrix elements for neutrinoless double beta decay
(0nu2beta) based on the quasiparticle random phase approximations (QRPA) are
affected by theoretical uncertainties, which can be substantially reduced by
fixing the unknown strength parameter g_pp of the residual particle-particle
interaction through one experimental constraint - most notably through the
two-neutrino double beta decay (2nu2beta) lifetime. However, it has been noted
that the g_pp adjustment via 2\nu2\beta data may bring QRPA models in
disagreement with independent data on electron capture (EC) and single beta
decay (beta^-) lifetimes. Actually, in two nuclei of interest for 0nu2beta
decay (Mo-100 and Cd-116), for which all such data are available, we show that
the disagreement vanishes, provided that the axial vector coupling g_A is
treated as a free parameter, with allowance for g_A<1 (``strong quenching'').
Three independent lifetime data (2nu2beta, EC, \beta^-) are then accurately
reproduced by means of two free parameters (g_pp, g_A), resulting in an
overconstrained parameter space. In addition, the sign of the 2nu2beta matrix
element M^2nu is unambiguously selected (M^2nu>0) by the combination of all
data. We discuss quantitatively, in each of the two nuclei, these
phenomenological constraints and their consequences for QRPA estimates of the
0nu2beta matrix elements and of their uncertainties.Comment: Revised version (27 pages, including 10 figures), focussed on Mo-100
and Cd-116. To appear in J. Phys. G: Nucl. Phys. (2008
Low-Background In-Trap Decay Spectroscopy with TITAN at TRIUMF
An in-trap decay spectroscopy setup has been developed and constructed for
use with the TITAN facility at TRIUMF. The goal of this device is to observe
weak electron-capture (EC) branching ratios for the odd-odd intermediate nuclei
in the decay process. This apparatus consists of an up-to 6 Tesla,
open-access spectroscopy ion-trap, surrounded radially by up to 7 planar Si(Li)
detectors which are separated from the trap by thin Be windows. This
configuration provides a significant increase in sensitivity for the detection
of low-energy photons by providing backing-free ion storage and eliminating
charged-particle-induced backgrounds. An intense electron beam is also employed
to increase the charge-states of the trapped ions, thus providing storage times
on the order of minutes, allowing for decay-spectroscopy measurements. The
technique of multiple ion-bunch stacking was also recently demonstrated, which
further extends the measurement possibilities of this apparatus. The current
status of the facility and initial results from a In measurement are
presented.Comment: Proceedings for the 2nd International Conference on Advances in
Radioactive Isotope Science (ARIS2014
Penning traps as a versatile tool for precise experiments in fundamental physics
This review article describes the trapping of charged particles. The main
principles of electromagnetic confinement of various species from elementary
particles to heavy atoms are briefly described. The preparation and
manipulation with trapped single particles, as well as methods of frequency
measurements, providing unprecedented precision, are discussed. Unique
applications of Penning traps in fundamental physics are presented.
Ultra-precise trap-measurements of masses and magnetic moments of elementary
particles (electrons, positrons, protons and antiprotons) confirm
CPT-conservation, and allow accurate determination of the fine-structure
constant alpha and other fundamental constants. This together with the
information on the unitarity of the quark-mixing matrix, derived from the
trap-measurements of atomic masses, serves for assessment of the Standard Model
of the physics world. Direct mass measurements of nuclides targeted to some
advanced problems of astrophysics and nuclear physics are also presented
Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements
A new technique has been developed at TRIUMF's TITAN facility to perform
in-trap decay spectroscopy. The aim of this technique is to eventually measure
weak electron capture branching ratios (ECBRs) and by this to consequently
determine GT matrix elements of decaying nuclei. These branching
ratios provide important input to the theoretical description of these decays.
The feasibility and power of the technique is demonstrated by measuring the
ECBR of Cs.Comment: 9 pages, 9 figure
Effect of the unpolarized spin state in spin-correlation measurement of two protons produced in the 12C(d,2He) reaction
In this note we discuss the effect of the unpolarized state in the
spin-correlation measurement of the two-proton state produced in
12C(d,2He) reaction at the KVI, Groningen. We show that in the presence of the
unpolarized state the maximal violation of the CHSH-Bell inequality is lower
than the classical limit if the purity of the state is less than . In particular, for the KVI experiment the violation of the
CHSH-Bell inequality should be corrected by a factor from the
pure state.Comment: 6 pages, to appear in J. Phys.
Polarization Correlations of 1S0 Proton Pairs as Tests of Bell and Wigner Inequalities
In an experiment designed to overcome the loophole of observer dependent
reality and satisfying the counterfactuality condition, we measured
polarization correlations of 1S0 proton pairs produced in 12C(d,2He) and
1H(d,He) reactions in one setting. The results of these measurements are used
to test the Bell and Wigner inequalties against the predictions of quantum
mechanics.Comment: 8 pages, 4 figure
- …