243 research outputs found

    Conserved DNA sequence features underlie pervasive RNA polymerase pausing

    Get PDF
    Pausing of transcribing RNA polymerase is regulated and creates opportunities to control gene expression. Research in metazoans has so far mainly focused on RNA polymerase II (Pol II) promoter-proximal pausing leaving the pervasive nature of pausing and its regulatory potential in mammalian cells unclear. Here, we developed a pause detecting algorithm (PDA) for nucleotide-resolution occupancy data and a new native elongating transcript sequencing approach, termed nested NET-seq, that strongly reduces artifactual peaks commonly misinterpreted as pausing sites. Leveraging PDA and nested NET-seq reveal widespread genome-wide Pol II pausing at single-nucleotide resolution in human cells. Notably, the majority of Pol II pauses occur outside of promoter-proximal gene regions primarily along the gene-body of transcribed genes. Sequence analysis combined with machine learning modeling reveals DNA sequence properties underlying widespread transcriptional pausing including a new pause motif. Interestingly, key sequence determinants of RNA polymerase pausing are conserved between human cells and bacteria. These studies indicate pervasive sequence-induced transcriptional pausing in human cells and the knowledge of exact pause locations implies potential functional roles in gene expression

    Electrostatics in wind-blown sand

    Full text link
    Wind-blown sand, or "saltation," is an important geological process, and the primary source of atmospheric dust aerosols. Significant discrepancies exist between classical saltation theory and measurements. We show here that these discrepancies can be resolved by the inclusion of sand electrification in a physically based saltation model. Indeed, we find that electric forces enhance the concentration of saltating particles and cause them to travel closer to the surface, in agreement with measurements. Our results thus indicate that sand electrification plays an important role in saltation.Comment: 4 journal pages, 5 figures, and supplementary material. Article is in press at PR

    MHC I Stabilizing Potential of Computer-Designed Octapeptides

    Get PDF
    Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2Kb. Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2Kb stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization

    Flexible Session Management in a Distributed Environment

    Full text link
    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems

    2'-O-methoxyethyl splice-switching oligos correct splicing from IVS2-745 β-thalassemia patient cells restoring HbA production and chain rebalance

    Get PDF
    \u3b2-thalassemia is a disorder caused by altered hemoglobin protein synthesis and affects individuals worldwide. Severe forms of the disease, left untreated, can result in death before the age of 3 years (1). The standard of care consists of chronic and costly palliative treatment by blood transfusion combined with iron chelation. This dual approach suppresses anemia and reduces iron-related toxicities in patients. Allogeneic bone marrow transplant is an option, but limited by the availability of a highly compatible HSC donor. While gene therapy is been explored in several trials, its use is highly limited to developed regions with centers of excellence and well-established healthcare systems (2). Hence, there remains a tremendous unmet medical need to develop alternative treatment strategies for \u3b2-thalassemia (3). Occurrence of aberrant splicing is one of the processes that affects \u3b2-globin synthesis in \u3b2-thalassemia. The (C>G) IVS-2-745 is a splicing mutation within intron 2 of the \u3b2-globin gene. It leads to an aberrantly spliced mRNA that incorporates an intron fragment. This results in an in-frame premature termination codon that inhibits \u3b2-globin production. Here, we propose the use of uniform 2'-O-methoxyethyl (2'-MOE) splice switching oligos (SSOs) to reverse this aberrant splicing in the pre-mRNA. With these lead SSOs we show aberrant to wild type splice switching. This switching leads to an increase of adult hemoglobin (HbA) up to 80% in erythroid cells from patients with the IVS-2-745 mutation. Furthermore, we demonstrate a restoration of the balance between \u3b2-like- and \u3b1-globin chains, and up to an 87% reduction in toxic \u3b1-heme aggregates. While examining the potential benefit of 2'-MOE-SSOs in a mixed sickle-thalassemic phenotypic setting, we found reduced HbS synthesis and sickle cell formation due to HbA induction. In summary, 2'-MOE-SSOs are a promising therapy for forms of \u3b2-thalassemia caused by mutations leading to aberrant splicing
    corecore