292 research outputs found
Smoluchowski-Kramers approximation in the case of variable friction
We consider the small mass asymptotics (Smoluchowski-Kramers approximation)
for the Langevin equation with a variable friction coefficient. The limit of
the solution in the classical sense does not exist in this case. We study a
modification of the Smoluchowski-Kramers approximation. Some applications of
the Smoluchowski-Kramers approximation to problems with fast oscillating or
discontinuous coefficients are considered.Comment: already publishe
Poisson-noise induced escape from a metastable state
We provide a complete solution of the problems of the probability
distribution and the escape rate in Poisson-noise driven systems. It includes
both the exponents and the prefactors. The analysis refers to an overdamped
particle in a potential well. The results apply for an arbitrary average rate
of noise pulses, from slow pulse rates, where the noise acts on the system as
strongly non-Gaussian, to high pulse rates, where the noise acts as effectively
Gaussian
Statistical mechanics of spatial evolutionary games
We discuss the long-run behavior of stochastic dynamics of many interacting
players in spatial evolutionary games. In particular, we investigate the effect
of the number of players and the noise level on the stochastic stability of
Nash equilibria. We discuss similarities and differences between systems of
interacting players maximizing their individual payoffs and particles
minimizing their interaction energy. We use concepts and techniques of
statistical mechanics to study game-theoretic models. In order to obtain
results in the case of the so-called potential games, we analyze the
thermodynamic limit of the appropriate models of interacting particles.Comment: 19 pages, to appear in J. Phys.
On population extinction risk in the aftermath of a catastrophic event
We investigate how a catastrophic event (modeled as a temporary fall of the
reproduction rate) increases the extinction probability of an isolated
self-regulated stochastic population. Using a variant of the Verhulst logistic
model as an example, we combine the probability generating function technique
with an eikonal approximation to evaluate the exponentially large increase in
the extinction probability caused by the catastrophe. This quantity is given by
the eikonal action computed over "the optimal path" (instanton) of an effective
classical Hamiltonian system with a time-dependent Hamiltonian. For a general
catastrophe the eikonal equations can be solved numerically. For simple models
of catastrophic events analytic solutions can be obtained. One such solution
becomes quite simple close to the bifurcation point of the Verhulst model. The
eikonal results for the increase in the extinction probability caused by a
catastrophe agree well with numerical solutions of the master equation.Comment: 11 pages, 11 figure
Path integral approach to random motion with nonlinear friction
Using a path integral approach, we derive an analytical solution of a
nonlinear and singular Langevin equation, which has been introduced previously
by P.-G. de Gennes as a simple phenomenological model for the stick-slip motion
of a solid object on a vibrating horizontal surface. We show that the optimal
(or most probable) paths of this model can be divided into two classes of
paths, which correspond physically to a sliding or slip motion, where the
object moves with a non-zero velocity over the underlying surface, and a
stick-slip motion, where the object is stuck to the surface for a finite time.
These two kinds of basic motions underlie the behavior of many more complicated
systems with solid/solid friction and appear naturally in de Gennes' model in
the path integral framework.Comment: 18 pages, 3 figure
Time-averaged MSD of Brownian motion
We study the statistical properties of the time-averaged mean-square
displacements (TAMSD). This is a standard non-local quadratic functional for
inferring the diffusion coefficient from an individual random trajectory of a
diffusing tracer in single-particle tracking experiments. For Brownian motion,
we derive an exact formula for the Laplace transform of the probability density
of the TAMSD by mapping the original problem onto chains of coupled harmonic
oscillators. From this formula, we deduce the first four cumulant moments of
the TAMSD, the asymptotic behavior of the probability density and its accurate
approximation by a generalized Gamma distribution
Metastability in Interacting Nonlinear Stochastic Differential Equations II: Large-N Behaviour
We consider the dynamics of a periodic chain of N coupled overdamped
particles under the influence of noise, in the limit of large N. Each particle
is subjected to a bistable local potential, to a linear coupling with its
nearest neighbours, and to an independent source of white noise. For strong
coupling (of the order N^2), the system synchronises, in the sense that all
oscillators assume almost the same position in their respective local potential
most of the time. In a previous paper, we showed that the transition from
strong to weak coupling involves a sequence of symmetry-breaking bifurcations
of the system's stationary configurations, and analysed in particular the
behaviour for coupling intensities slightly below the synchronisation
threshold, for arbitrary N. Here we describe the behaviour for any positive
coupling intensity \gamma of order N^2, provided the particle number N is
sufficiently large (as a function of \gamma/N^2). In particular, we determine
the transition time between synchronised states, as well as the shape of the
"critical droplet", to leading order in 1/N. Our techniques involve the control
of the exact number of periodic orbits of a near-integrable twist map, allowing
us to give a detailed description of the system's potential landscape, in which
the metastable behaviour is encoded
Dispersion and reaction in random flows: Single realization vs ensemble average
We examine the dispersion of a passive scalar released in an incompressible
fluid flow in an unbounded domain. The flow is assumed to be spatially
periodic, with zero spatial average, and random in time, in the manner of the
random-phase alternating sine flow which we use as an exemplar. In the
long-time limit, the scalar concentration takes the same, predictable form for
almost all realisations of the flow, with a Gaussian core characterised by an
effective diffusivity, and large-deviation tails characterised by a rate
function (which can be evaluated by computing the largest Lyapunov exponent of
a family of random-in-time partial differential equations). We contrast this
single-realisation description with that which applies to the average of the
concentration over an ensemble of flow realisations. We show that the
single-realisation and ensemble-average effective diffusivities are identical
but that the corresponding rate functions are not, and that the
ensemble-averaged description overestimates the concentration in the tails
compared with that obtained for single-flow realisations. This difference has a
marked impact for scalars reacting according to the
Fisher--Kolmogorov--Petrovskii--Piskunov (FKPP) model. Such scalars form an
expanding front whose shape is approximately independent of the flow
realisation and can be deduced from the single-realisation large-deviation rate
function. We test our predictions against numerical simulations of the
alternating sine flow
Numerical simulations versus theoretical predictions for a non-Gaussian noise induced escape problem in application to full counting statistics
A theoretical approach for characterizing the inïŹuence of asymmetry of noise distribution on the escape rate
of a multistable system is presented. This was carried out via the estimation of an action, which is deïŹned as
an exponential factor in the escape rate, and discussed in the context of full counting statistics paradigm. The
approach takes into account all cumulants of the noise distribution and demonstrates an excellent agreement with
the results of numerical simulations. An approximation of the third-order cumulant was shown to have limitations
on the range of dynamic stochastic system parameters. The applicability of the theoretical approaches developed
so far is discussed for an adequate characterization of the escape rate measured in experiments
Stick-slip motion of solids with dry friction subject to random vibrations and an external field
We investigate a model for the dynamics of a solid object, which moves over a
randomly vibrating solid surface and is subject to a constant external force.
The dry friction between the two solids is modeled phenomenologically as being
proportional to the sign of the object's velocity relative to the surface, and
therefore shows a discontinuity at zero velocity. Using a path integral
approach, we derive analytical expressions for the transition probability of
the object's velocity and the stationary distribution of the work done on the
object due to the external force. From the latter distribution, we also derive
a fluctuation relation for the mechanical work fluctuations, which incorporates
the effect of the dry friction.Comment: v1: 23 pages, 9 figures; v2: Reference list corrected; v3: Published
version, typos corrected, references adde
- âŠ