41 research outputs found

    Grasping rules and semiclassical limit of the geometry in the Ponzano-Regge model

    Get PDF
    We show how the expectation values of geometrical quantities in 3d quantum gravity can be explicitly computed using grasping rules. We compute the volume of a labelled tetrahedron using the triple grasping. We show that the large spin expansion of this value is dominated by the classical expression, and we study the next to leading order quantum corrections.Comment: 18 pages, 1 figur

    Physical boundary state for the quantum tetrahedron

    Full text link
    We consider stability under evolution as a criterion to select a physical boundary state for the spinfoam formalism. As an example, we apply it to the simplest spinfoam defined by a single quantum tetrahedron and solve the associated eigenvalue problem at leading order in the large spin limit. We show that this fixes uniquely the free parameters entering the boundary state. Remarkably, the state obtained this way gives a correlation between edges which runs at leading order with the inverse distance between the edges, in agreement with the linearized continuum theory. Finally, we give an argument why this correlator represents the propagation of a pure gauge, consistently with the absence of physical degrees of freedom in 3d general relativity.Comment: 20 pages, 6 figure

    A semiclassical tetrahedron

    Get PDF
    We construct a macroscopic semiclassical state state for a quantum tetrahedron. The expectation values of the geometrical operators representing the volume, areas and dihedral angles are peaked around assigned classical values, with vanishing relative uncertainties.Comment: 10 pages; v2 revised versio

    On knottings in the physical Hilbert space of LQG as given by the EPRL model

    Full text link
    We consider the EPRL spin foam amplitude for arbitrary embedded two-complexes. Choosing a definition of the face- and edge amplitudes which lead to spin foam amplitudes invariant under trivial subdivisions, we investigate invariance properties of the amplitude under consistent deformations, which are deformations of the embedded two-complex where faces are allowed to pass through each other in a controlled way. Using this surprising invariance, we are able to show that in the physical Hilbert space as defined by the sum over all spin foams contains no knotting classes of graphs anymore.Comment: 22 pages, 14 figure

    Linearized dynamics from the 4-simplex Regge action

    Full text link
    We study the relation between the hessian matrix of the riemannian Reggae action on a 4-simplex and linearized quantum gravity. We give an explicit formula for the hessian as a function of the geometry, and show that it has a single zero mode. We then use a 3d lattice model to show that (i) the zero mode is a remnant of the continuum diffeomorphism invariance, and (ii) we recover the complete free graviton propagator in the continuum limit. The results help clarify the structure of the boundary state needed in the recent calculations of the graviton propagator in loop quantum gravity, and in particular its role in fixing the gauge.Comment: 16 (+9 Appendix) pages, 1 figur

    Second-order amplitudes in loop quantum gravity

    Full text link
    We explore some second-order amplitudes in loop quantum gravity. In particular, we compute some second-order contributions to diagonal components of the graviton propagator in the large distance limit, using the old version of the Barrett-Crane vertex amplitude. We illustrate the geometry associated to these terms. We find some peculiar phenomena in the large distance behavior of these amplitudes, related with the geometry of the generalized triangulations dual to the Feynman graphs of the corresponding group field theory. In particular, we point out a possible further difficulty with the old Barrett-Crane vertex: it appears to lead to flatness instead of Ricci-flatness, at least in some situations. The observation raises the question whether this difficulty remains with the new version of the vertex.Comment: 22 pages, 18 figure

    Coupling gauge theory to spinfoam 3d quantum gravity

    Full text link
    We construct a spinfoam model for Yang-Mills theory coupled to quantum gravity in three dimensional riemannian spacetime. We define the partition function of the coupled system as a power series in g_0^2 G that can be evaluated order by order using grasping rules and the recoupling theory. With respect to previous attempts in the literature, this model assigns the dynamical variables of gravity and Yang-Mills theory to the same simplices of the spinfoam, and it thus provides transition amplitudes for the spin network states of the canonical theory. For SU(2) Yang-Mills theory we show explicitly that the partition function has a semiclassical limit given by the Regge discretization of the classical Yang-Mills action.Comment: 18 page

    Numerical indications on the semiclassical limit of the flipped vertex

    Full text link
    We introduce a technique for testing the semiclassical limit of a quantum gravity vertex amplitude. The technique is based on the propagation of a semiclassical wave packet. We apply this technique to the newly introduced "flipped" vertex in loop quantum gravity, in order to test the intertwiner dependence of the vertex. Under some drastic simplifications, we find very preliminary, but surprisingly good numerical evidence for the correct classical limit.Comment: 4 pages, 8 figure

    LQG propagator: III. The new vertex

    Full text link
    In the first article of this series, we pointed out a difficulty in the attempt to derive the low-energy behavior of the graviton two-point function, from the loop-quantum-gravity dynamics defined by the Barrett-Crane vertex amplitude. Here we show that this difficulty disappears when using the corrected vertex amplitude recently introduced in the literature. In particular, we show that the asymptotic analysis of the new vertex amplitude recently performed by Barrett, Fairbairn and others, implies that the vertex has precisely the asymptotic structure that, in the second article of this series, was indicated as the key necessary condition for overcoming the difficulty.Comment: 9 page
    corecore