20 research outputs found

    Physical boundary state for the quantum tetrahedron

    Full text link
    We consider stability under evolution as a criterion to select a physical boundary state for the spinfoam formalism. As an example, we apply it to the simplest spinfoam defined by a single quantum tetrahedron and solve the associated eigenvalue problem at leading order in the large spin limit. We show that this fixes uniquely the free parameters entering the boundary state. Remarkably, the state obtained this way gives a correlation between edges which runs at leading order with the inverse distance between the edges, in agreement with the linearized continuum theory. Finally, we give an argument why this correlator represents the propagation of a pure gauge, consistently with the absence of physical degrees of freedom in 3d general relativity.Comment: 20 pages, 6 figure

    Consistently Solving the Simplicity Constraints for Spinfoam Quantum Gravity

    Full text link
    We give an independent derivation of the Engle-Pereira-Rovelli spinfoam model for quantum gravity which recently appeared in [arXiv:0705.2388]. Using the coherent state techniques introduced earlier in [arXiv:0705.0674], we show that the EPR model realizes a consistent imposition of the simplicity constraints implementing general relativity from a topological BF theory.Comment: 6 pages, 2 figures, v2: typos correcte

    3d Spinfoam Quantum Gravity: Matter as a Phase of the Group Field Theory

    Get PDF
    An effective field theory for matter coupled to three-dimensional quantum gravity was recently derived in the context of spinfoam models in hep-th/0512113. In this paper, we show how this relates to group field theories and generalized matrix models. In the first part, we realize that the effective field theory can be recasted as a matrix model where couplings between matrices of different sizes can occur. In a second part, we provide a family of classical solutions to the three-dimensional group field theory. By studying perturbations around these solutions, we generate the dynamics of the effective field theory. We identify a particular case which leads to the action of hep-th/0512113 for a massive field living in a flat non-commutative space-time. The most general solutions lead to field theories with non-linear redefinitions of the momentum which we propose to interpret as living on curved space-times. We conclude by discussing the possible extension to four-dimensional spinfoam models.Comment: 17 pages, revtex4, 1 figur

    Holomorphic Factorization for a Quantum Tetrahedron

    Full text link
    We provide a holomorphic description of the Hilbert space H(j_1,..,j_n) of SU(2)-invariant tensors (intertwiners) and establish a holomorphically factorized formula for the decomposition of identity in H(j_1,..,j_n). Interestingly, the integration kernel that appears in the decomposition formula turns out to be the n-point function of bulk/boundary dualities of string theory. Our results provide a new interpretation for this quantity as being, in the limit of large conformal dimensions, the exponential of the Kahler potential of the symplectic manifold whose quantization gives H(j_1,..,j_n). For the case n=4, the symplectic manifold in question has the interpretation of the space of "shapes" of a geometric tetrahedron with fixed face areas, and our results provide a description for the quantum tetrahedron in terms of holomorphic coherent states. We describe how the holomorphic intertwiners are related to the usual real ones by computing their overlap. The semi-classical analysis of these overlap coefficients in the case of large spins allows us to obtain an explicit relation between the real and holomorphic description of the space of shapes of the tetrahedron. Our results are of direct relevance for the subjects of loop quantum gravity and spin foams, but also add an interesting new twist to the story of the bulk/boundary correspondence.Comment: 45 pages; published versio

    A Immirzi-like parameter for 3d quantum gravity

    Full text link
    We study an Immirzi-like ambiguity in three-dimensional quantum gravity. It shares some features with the Immirzi parameter of four-dimensional loop quantum gravity: it does not affect the equations of motion, but modifies the Poisson brackets and the constraint algebra at the canonical level. We focus on the length operator and show how to define it through non-commuting fluxes. We compute its spectrum and show the effect of this Immirzi-like ambiguity. Finally, we extend these considerations to 4d gravity and show how the different topological modifications of the action affect the canonical structure of loop quantum gravity.Comment: 14 pages, v2: one reference added, more comments on the 3d/4d compariso

    A New Class of Group Field Theories for 1st Order Discrete Quantum Gravity

    Full text link
    Group Field Theories, a generalization of matrix models for 2d gravity, represent a 2nd quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of Group Field Theory models, for any choice of spacetime dimension and signature, whose Feynman amplitudes are given by path integrals for clearly identified discrete gravity actions, in 1st order variables. In the 3-dimensional case, the corresponding discrete action is that of 1st order Regge calculus for gravity (generalized to include higher order corrections), while in higher dimensions, they correspond to a discrete BF theory (again, generalized to higher order) with an imposed orientation restriction on hinge volumes, similar to that characterizing discrete gravity. The new models shed also light on the large distance or semi-classical approximation of spin foam models. This new class of group field theories may represent a concrete unifying framework for loop quantum gravity and simplicial quantum gravity approaches.Comment: 48 pages, 4 figures, RevTeX, one reference adde

    Dynamics for a 2-vertex Quantum Gravity Model

    Get PDF
    We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N) invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.Comment: 28 pages, v2: typos correcte

    Group field theory formulation of 3d quantum gravity coupled to matter fields

    Full text link
    We present a new group field theory describing 3d Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs colored with SU(2) algebraic data, from which one can reconstruct at once a 3-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3d quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss.Comment: RevTeX; 28 pages, 21 figure

    Entropy in the Classical and Quantum Polymer Black Hole Models

    Full text link
    We investigate the entropy counting for black hole horizons in loop quantum gravity (LQG). We argue that the space of 3d closed polyhedra is the classical counterpart of the space of SU(2) intertwiners at the quantum level. Then computing the entropy for the boundary horizon amounts to calculating the density of polyhedra or the number of intertwiners at fixed total area. Following the previous work arXiv:1011.5628, we dub these the classical and quantum polymer models for isolated horizons in LQG. We provide exact micro-canonical calculations for both models and we show that the classical counting of polyhedra accounts for most of the features of the intertwiner counting (leading order entropy and log-correction), thus providing us with a simpler model to further investigate correlations and dynamics. To illustrate this, we also produce an exact formula for the dimension of the intertwiner space as a density of "almost-closed polyhedra".Comment: 24 page

    Coherent states, constraint classes, and area operators in the new spin-foam models

    Full text link
    Recently, two new spin-foam models have appeared in the literature, both motivated by a desire to modify the Barrett-Crane model in such a way that the imposition of certain second class constraints, called cross-simplicity constraints, are weakened. We refer to these two models as the FKLS model, and the flipped model. Both of these models are based on a reformulation of the cross-simplicity constraints. This paper has two main parts. First, we clarify the structure of the reformulated cross-simplicity constraints and the nature of their quantum imposition in the new models. In particular we show that in the FKLS model, quantum cross-simplicity implies no restriction on states. The deeper reason for this is that, with the symplectic structure relevant for FKLS, the reformulated cross-simplicity constraints, in a certain relevant sense, are now \emph{first class}, and this causes the coherent state method of imposing the constraints, key in the FKLS model, to fail to give any restriction on states. Nevertheless, the cross-simplicity can still be seen as implemented via suppression of intertwiner degrees of freedom in the dynamical propagation. In the second part of the paper, we investigate area spectra in the models. The results of these two investigations will highlight how, in the flipped model, the Hilbert space of states, as well as the spectra of area operators exactly match those of loop quantum gravity, whereas in the FKLS (and Barrett-Crane) models, the boundary Hilbert spaces and area spectra are different.Comment: 21 pages; statements about gamma limits made more precise, and minor phrasing change
    corecore