253 research outputs found

    Interleukin-33 in human gliomas: Expression and prognostic significance

    Full text link
    Interleukin-33 (IL-33) is a nuclear and pleiotropic cytokine with regard to its cellular sources and its actions. IL-33 is involved in the pathogenesis of brain diseases. Several factors account for the tumorigenicity of human gliomas, including cytokines and their receptors. The present study assessed the expression and prognostic significance of IL-33 in human astroglial brain tumors. Protein levels of IL-33 were determined by immunohistochemistry using a tissue microarray containing 95 human gliomas. mRNA expression data of IL-33, as well as of its receptors, IL-1 receptor-like 1 protein and IL-1 receptor accessory protein (IL1RAcP), were obtained from The Cancer Genome Atlas database. IL-33 protein was expressed heterogeneously in tumor tissue, but was, however, not detected in normal brain tissue. There was no differential IL-33 protein expression by tumor grade, while IL-33 protein expression was associated with inferior survival in patients with recurrent glioblastomas. Interrogations of the TCGA database indicated that mRNA expression of IL-33 and the IL-33 receptors was heterogeneous, and that IL-33 and IL1RAcP mRNA levels were correlated with the tumor grade. Elevated IL-33 mRNA levels were associated with the inferior survival of glioblastoma patients. Therefore, IL-33 may play an important role in the pathogenesis and prognosis of human gliomas

    Protective Effect of a 21-Aminosteroid during Experimental Pneumococcal Meningitis

    Get PDF
    This study investigated whether the 21-aminosteroid U74389F, an inhibitor of lipid peroxidation, attenuates pathophysiologic changes in experimental pneumococcal meningitis. Infected rats injected intravenously with vehicle and U74389F developed increases in regional cerebral blood flow (rCBF), intracranial pressure (ICP), brain water content, and white blood cells (WBC) in cerebrospinal fluid (CSF) within 8 h after intracisternal challenge. Pretreatment with or administration of U74389F 4 h after infection significantly reduced the increase in ICP but had no effect on rCBF increase. Moreover, U74389F pretreatment significantly reduced brain water content and CSF WBC count. In vitro, U74389F inhibited iron-dependent lipid peroxidation of astrocyte cultures and the production of tumor necrosis factor-a, interleukin-6, and nitric oxide by stimulated macrophages. These data suggest that U74389F modulates early pathophysiologic alterations in experimental pneumococcal meningiti

    Toll-Like Receptor 2-Deficient Mice Are Highly Susceptible to Streptococcus pneumoniae Meningitis because of Reduced Bacterial Clearing and Enhanced Inflammation

    Get PDF
    Toll-like receptor-2 (TLR2) mediates host responses to gram-positive bacterial wall components. TLR2 function was investigated in a murine Streptococcus pneumoniae meningitis model in wild-type (wt) and TLR2-deficient (TLR2−/−) mice. TLR2−/− mice showed earlier time of death than wt mice (P<.02). Plasma interleukin-6 levels and bacterial numbers in blood and peripheral organs were similar for both strains. With ceftriaxone therapy, none of the wt but 27% of the TLR2−/− mice died (P<.04). Beyond 3 hours after infection, TLR2−/− mice had higher bacterial loads in brain than did wt mice, as assessed with luciferase-tagged S. pneumoniae by means of a Xenogen-CCD (charge-coupled device) camera. After 24 h, tumor necrosis factor activity was higher in cerebrospinal fluid of TLR2−/− than wt mice (P<.05) and was related to increased blood-brain barrier permeability (Evans blue staining, P<.02). In conclusion, the lack of TLR2 was associated with earlier death from meningitis, which was not due to sepsis but to reduced brain bacterial clearing, followed by increased intrathecal inflammatio

    Antibodies to the Junctional Adhesion Molecule Cause Disruption of Endothelial Cells and Do Not Prevent Leukocyte Influx into the Meninges after Viral or Bacterial Infection

    Get PDF
    A hallmark of infectious meningitis is the invasion of leukocytes into the subarachnoid space. In experimental meningitis triggered by tumor necrosis factor—α and interleukin-1β, the interaction of leukocytes with endothelial cells and the subsequent migration of the cells through the vessel wall can be inhibited by an antibody to the junctional adhesion molecule (JAM). In contrast to the cytokine-induced meningitis model, anti-JAM antibodies failed to prevent leukocyte influx into the central nervous system after infection of mice with Listeria monocytogenes or lymphocytic choriomeningitis virus. Furthermore, in bacterial meningitis, anti-JAM IgG antibodies, but not Fab fragments, caused disruption of the endothelium. Likewise complement-dependent antibody-mediated cytotoxicity was observed in cultured brain endothelial cells treated with anti-JAM IgG but not with its Fab fragmen

    TNFR1 signalling is critical for the development of demyelination and the limitation of T-cell responses during immune-mediated CNS disease

    Get PDF
    In this review we summarize the essential findings about the function of tumour necrosis factor (TNF) and its cognate receptors TNFR1 and TNFR2, and lymphotoxin α (LT-α) ligands in immune-mediated CNS inflammation and demyelination. The advent of homologous recombination technology in rodents provides a new method which has been used during the last 5 years and has led to insights into the pathophysiology of experimental autoimmune encephalomyelitis (EAE) in an unprecedented way. Studies with knockout mice in which genes of the TNF ligand/receptor superfamily are not expressed and studies with transgenic mice overexpressing TNF and TNFR reveal the critical role of the TNFR1 signalling pathway in the control of CNS demyelination and inflammation. These studies provide novel findings and at the same time shed light on the complex pathophysiology of EAE. Together, these findings may contribute to better understanding of EAE and open new avenues in experimental therapies for multiple sclerosi

    Semi-classical Monte Carlo algorithm for the simulation of X-ray grating interferometry.

    Get PDF
    Traditional simulation techniques such as wave optics methods and Monte Carlo (MC) particle transport cannot model both interference and inelastic scattering phenomena within one framework. Based on the rules of quantum mechanics to calculate probabilities, we propose a new semi-classical MC algorithm for efficient and simultaneous modeling of scattering and interference processes. The similarities to MC particle transport allow the implementation as a flexible c++ object oriented extension of EGSnrc-a well-established MC toolkit. In addition to previously proposed Huygens principle based transport through optics components, new variance reduction techniques for the transport through gratings are presented as transport options to achieve the required improvement in speed and memory costs necessary for an efficient exploration (system design-dose estimations) of the medical implementation of X-ray grating interferometry (GI), an emerging imaging technique currently subject of tremendous efforts towards clinical translation. The feasibility of simulation of interference effects is confirmed in four academic cases and an experimental table-top GI setup. Comparison with conventional MC transport show that deposited energy features of EGSnrc are conserved
    • …
    corecore