650 research outputs found

    Dispersal and microsite limitation of a rare alpine plant

    Get PDF
    Knowledge on the limitation of plant species' distributions is important for preserving alpine biodiversity, particularly when the loss of alpine habitats because of global warming or land use changes is faster than colonization of new habitats. We investigated the potential of the rare alpine plant CampanulathyrsoidesL. to colonize grassland sites of different suitability on a small mountain plateau in the Swiss Alps. A total of 15 experimental sites were selected according to their differences in habitat suitability for adult C.thyrsoides, which was measured by the Beals index. At each site we applied a disturbance treatment, added seeds at different densities and monitored the survival of seedlings over two consecutive years. The number of surviving seedlings was not positively related to habitat suitability for adult C.thyrsoides. Furthermore, C.thyrsoides appears to be strongly dispersal limited at the regional scale because seed addition to unoccupied habitats resulted in successful germination and survival of seedlings. Since an increase of seed density in already occupied sites did not affect the number of seedlings, we suggest that C.thyrsoides is microsite limited at the local scale. Microsite limitation is supported by the result that seedling survival of the species was enhanced in vegetation gaps created by disturbance. We conclude that C.thyrsoides may become endangered in the future if environmental changes cause local extinction of populations. An appropriate management, such as a disturbance regime for enhancing recruitment in existing populations, may ensure the long-term survival of this rare alpine plant specie

    High genetic differentiation in populations of the rare alpine plant species Campanula thyrsoides on a small mountain

    Get PDF
    Changes in climate and traditional land use have contributed to a loss and fragmentation of suitable habitats for many alpine plant species. Despite the importance of these changes, our knowledge of the consequences for gene flow and genetic diversity is still poor, especially in rare taxa and at fine spatial scales. Here, we investigated the genetic diversity in a rare alpine plant on a small and highly structured mountain in the Swiss Alps. Using microsatellite markers and Bayesian cluster analyses, we investigated genetic diversity within and among 24 populations of Campanula thyrsoides L. We also tested whether landscape structure has affected genetic structure by correlating genetic diversity with landscape and population features, which were assessed in a four-year monitoring period. The recorded genetic diversity (H e=0.714) and genetic differentiation ( GSTG^{\prime}_{\rm ST} =0.32) at distances of 1-10km were remarkably high. Clustering analyses revealed a split of populations into two genetically different spatial groups, but between-population genetic distances were neither correlated to geographic distance, elevation nor slope. The high differentiation and genetic bottlenecks may indicate strong founder effects, although the number of alleles was not decreased in bottlenecked populations. We conclude that stochastic colonisation by seeds is most important for shaping the genetic structure of C. thyrsoides on this small mountain. The high genetic diversity even in small populations may indicate that occasional gene flow is strong enough to overcome negative effects of bottlenecks. Nevertheless, further fragmentation and isolation of habitats may threaten this rare plant in the futur

    Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes

    Get PDF
    Specific leaf area (SLA) is an important plant functional trait as it is an indicator of ecophysiological characteristics like relative growth rate, stress tolerance and leaf longevity. Substantial intraspecific variation in SLA is common and usually correlates with environmental conditions. For instance, SLA decreases with increasing altitude, which is understood as adjustment to temperature. It is generally assumed that intraspecific variation is mostly the result of environmentally induced phenotypic plasticity, but genetic effects may also be present, due to local adaptation or genetic drift. In this study, genotypic and environmental effects on SLA were experimentally separated for the widespread Alpine bell flower Campanula thyrsoides by transplanting plants to three common gardens at contrasting altitudes (600, 1,235 and 1,850m a.s.l.). Seeds were sampled from 18 populations in four phylogeographic regions within the European Alps. A strong plastic response was observed: SLA decreased with increasing altitude of the common gardens (22.0% of variation). The phylogeographic regions were differentiated in SLA in the common gardens (10.1% of variation), indicating that SLA is at least partly genetically determined. Plants from the six easternmost populations experienced a submediterranean climate and showed decreased SLA values in the three common gardens compared to populations to the west, which may be explained as adaptation to drought. Within these submediterranean populations, SLA decreased with altitude of origin in two out of three common gardens. Concluding, SLA shows strong phenotypic plasticity as well as substantial genetic effects, the latter probably being the result of adaptation to local conditions rather than genetic drif

    Metabolic activation of carcinogenic aristolochic acid, a risk factor for Balkan endemic nephropathy

    Get PDF
    Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, is associated with tumor development in patients suffering from Chinese herbs nephropathy (now termed aristolochic acid nephropathy, AAN) and may also be a cause for the development of a similar type of nephropathy, the Balkan endemic nephropathy (BEN). Major DNA adducts [7-(deoxyadenosin-N-6-yl)-aristolactam and 7-(deoxyguanosin-N-2-yl)aristolactam] formed from AA after reductive metabolic activation were found in renal tissues of patients with both diseases. Understanding which human enzymes are involved in AA activation and/or detoxication is important in the assessment of an individual's susceptibility to this plant carcinogen. This paper reviews major hepatic and renal enzymes responsible for AA-DNA adduct formation in humans. Phase I biotransformation enzymes play a crucial role in the metabolic activation of AA to species forming DNA adducts, while a role of phase II enzymes in this process is questionable. Most of the activation of AA in human hepatic microsomes is mediated by cytochrome P450 (CYP) 1A2 and, to a lower extent, by CYP1A1; NADPH:CYP reductase plays a minor role. In human renal microsomes NADPH:CYP reductase is more effective in AA activation. Prostaglandin H synthase (cyclooxygenase, COX) is another enzyme activating AA in human renal microsomes. Among the cytosolic reductases, NAD(P)H:quinone oxidoreductase (NQO I) is the most efficient in the activation of AA in human liver and kidney. Studies with purified enzymes confirmed the importance of CYPs, NADPH:CYP reductase, COX and NQO1 in the AA activation. The orientation of AA in the active sites of human CYP1A1, -1A2 and NQO1 was predicted from molecular modeling and explains the strong reductive potential of these enzymes for AA detected experimentally. We hypothesized that inter-individual variations in expressions and activities of enzymes activating AA may be one of the causes responsible for the different susceptibilities to this carcinogen reflected in the development of AA-induced nephropathies and associated urothelial cancer. (c) 2007 Elsevier B.V. All rights reserved

    Performance of germinating tree seedlings below and above treeline in the Swiss Alps

    Get PDF
    The germination and early survival of tree seedlings is a critical process for the understanding of treeline dynamics with ongoing climate change. Here we analyzed the performance of 0-4year-old seedlings of seven tree species at three sites above and below the current altitudinal treeline in the Swiss Central Alps near Davos. Starting from sown seeds, we monitored the seedling performance as proportions of living seedlings, seedling shoot height growth, and biomass allocation over 4years to examine changes along an elevational gradient. We evaluated the relative importance of the environmental factors soil temperature, light conditions, water use efficiency, and nitrogen availability on seedling performance. During the 4years, the proportions of living seedlings differed only slightly along the elevational gradient even in species currently occurring at lower elevations. Microsite-specific soil temperature and light availability had only little effect on the proportion of living seedlings and seedling biomass across the elevational gradient. Conversely, seedling biomass and biomass allocation correlated well with the foliar stable nitrogen isotope abundance (δ 15N) that was used as an indicator for nitrogen availability. Collectively, our results suggested that the early establishment of seedlings of a variety of tree species in the treeline ecotone was not limited by current climatic conditions even beyond the species' actual upper distribution limit. Nitrogen dynamics appeared to be an important environmental co-driver for biomass production and allocation in very young tree seedling

    Pollen dispersal and gene flow within and into a population of the alpine monocarpic plant Campanula thyrsoides

    Get PDF
    Background and Aims Gene flow by seed and pollen largely shapes the genetic structure within and among plant populations. Seed dispersal is often strongly spatially restricted, making gene flow primarily dependent on pollen dispersal within and into populations. To understand distance-dependent pollination success, pollen dispersal and gene flow were studied within and into a population of the alpine monocarpic perennial Campanula thyrsoides. Methods A paternity analysis was performed on sampled seed families using microsatellites, genotyping 22 flowering adults and 331 germinated offspring to estimate gene flow, and pollen analogues were used to estimate pollen dispersal. The focal population was situated among 23 genetically differentiated populations on a subalpine mountain plateau (<10 km2) in central Switzerland. Key Results Paternity analysis assigned 110 offspring (33·2 %) to a specific pollen donor (i.e. ‘father') in the focal population. Mean pollination distance was 17·4 m for these offspring, and the pollen dispersal curve based on positive LOD scores of all 331 offspring was strongly decreasing with distance. The paternal contribution from 20-35 offspring (6·0-10·5 %) originated outside the population, probably from nearby populations on the plateau. Multiple potential fathers were assigned to each of 186 offspring (56·2 %). The pollination distance to ‘mother' plants was negatively affected by the mothers' degree of spatial isolation in the population. Variability in male mating success was not related to the degree of isolation of father plants. Conclusions Pollen dispersal patterns within the C. thyrsoides population are affected by spatial positioning of flowering individuals and pollen dispersal may therefore contribute to the course of evolution of populations of this species. Pollen dispersal into the population was high but apparently not strong enough to prevent the previously described substantial among-population differentiation on the plateau, which may be due to the monocarpic perenniality of this specie

    Mechanisms of Enzyme-Catalyzed Reduction of Two Carcinogenic Nitro-Aromatics, 3-Nitrobenzanthrone and Aristolochic Acid I: Experimental and Theoretical Approaches

    Get PDF
    Abstract: This review summarizes the results found in studies investigating the enzymatic activation of two genotoxic nitro-aromatics, an environmental pollutant and carcinogen 3-nitrobenzanthrone (3-NBA) and a natural plant nephrotoxin and carcinogen aristolochic acid I (AAI), to reactive species forming covalent DNA adducts. Experimental and theoretical approaches determined the reasons why human NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P450 (CYP) 1A1 and 1A2 have the potential to reductively activate both nitro-aromatics. The results also contributed to the elucidation of the molecular mechanisms of these reactions. The contribution of conjugation enzymes such as N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) to the activation of 3-NBA and AAI was also examined. The results indicated differences in the abilities of 3-NBA and AAI metabolites to be further activated by these conjugation enzymes. The formation of DNA adducts generated by both carcinogens during their reductive activation by the NOQ1 and CYP1A1/
    corecore