860 research outputs found

    Falsification of Cyber-Physical Systems with Robustness-Guided Black-Box Checking

    Full text link
    For exhaustive formal verification, industrial-scale cyber-physical systems (CPSs) are often too large and complex, and lightweight alternatives (e.g., monitoring and testing) have attracted the attention of both industrial practitioners and academic researchers. Falsification is one popular testing method of CPSs utilizing stochastic optimization. In state-of-the-art falsification methods, the result of the previous falsification trials is discarded, and we always try to falsify without any prior knowledge. To concisely memorize such prior information on the CPS model and exploit it, we employ Black-box checking (BBC), which is a combination of automata learning and model checking. Moreover, we enhance BBC using the robust semantics of STL formulas, which is the essential gadget in falsification. Our experiment results suggest that our robustness-guided BBC outperforms a state-of-the-art falsification tool.Comment: Accepted to HSCC 202

    The importance of Lifestyle entrepreneurship: A conceptual study of the tourism industry

    Get PDF
    The purpose of the paper is to explore and discuss the emergence of lifestyle entrepreneurship. The article addresses the question of the relationship between entrepreneur’s life quality and enterprise growth. The purpose is to conceptualize this relationship and to learn more about lifestyle entrepreneurship. Tourism serves as a case industry to illustrate both relevant research in the field of lifestyle entrepreneurship and a conceptual framework to examine the relationship between entrepreneurial activities and perceived life quality. The paper delivers a literature review on entrepreneurship and certain forms of entrepreneurship and conceptualizes lifestyle enterprise’s growth.

    Quality and Quantity in Robustness-Checking Using Formal Techniques

    Get PDF
    Fault tolerance is one of the main challenges for future technology scaling to tolerate transient faults. Various techniques at design level are available to catch and handle transient faults, e.g., Triple Modular Redundancy. An important but missing step is to verify the implementation of those techniques since the implementation might be buggy itself. The thesis is focusing on formally verifying digital circuits with respect to fault-tolerant aspects. It considers transient faults and basically checks whether these faults can influence the output behavior of sequential circuits for any kind of scenarios. As a result the designer is pin-pointed directly to critical parts of the design and gets a prove about the absence of faulty behavior for non-critical parts. The focus of the verification is completeness with respect to the analysis. Three issues need to be adequately addressed: 1) cover all input stimuli, 2) all possible transient faults, and, 3) all possibly exponential long (wrt. to number of state bits) propagation paths. All three issues are addressed in different engines. A tool called RobuCheck has been implemented and evaluated on different academic benchmarks from ITC'99 and industrial benchmarks from IBM

    Reachability analysis of linear hybrid systems via block decomposition

    Get PDF
    Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discrete post operators to compute states reachable according to continuous and discrete dynamics, respectively. In this paper, we enhance both of these operators and make sure that most of the involved computations are performed in low-dimensional state space. In particular, we improve the continuous-post operator by performing computations in high-dimensional state space only for time intervals relevant for the subsequent application of the discrete-post operator. Furthermore, the new discrete-post operator performs low-dimensional computations by leveraging the structure of the guard and assignment of a considered transition. We illustrate the potential of our approach on a number of challenging benchmarks.Comment: Accepted at EMSOFT 202

    Reach Set Approximation through Decomposition with Low-dimensional Sets and High-dimensional Matrices

    Full text link
    Approximating the set of reachable states of a dynamical system is an algorithmic yet mathematically rigorous way to reason about its safety. Although progress has been made in the development of efficient algorithms for affine dynamical systems, available algorithms still lack scalability to ensure their wide adoption in the industrial setting. While modern linear algebra packages are efficient for matrices with tens of thousands of dimensions, set-based image computations are limited to a few hundred. We propose to decompose reach set computations such that set operations are performed in low dimensions, while matrix operations like exponentiation are carried out in the full dimension. Our method is applicable both in dense- and discrete-time settings. For a set of standard benchmarks, it shows a speed-up of up to two orders of magnitude compared to the respective state-of-the art tools, with only modest losses in accuracy. For the dense-time case, we show an experiment with more than 10.000 variables, roughly two orders of magnitude higher than possible with previous approaches

    Data-driven Reachability using Christoffel Functions and Conformal Prediction

    Full text link
    An important mathematical tool in the analysis of dynamical systems is the approximation of the reach set, i.e., the set of states reachable after a given time from a given initial state. This set is difficult to compute for complex systems even if the system dynamics are known and given by a system of ordinary differential equations with known coefficients. In practice, parameters are often unknown and mathematical models difficult to obtain. Data-based approaches are promised to avoid these difficulties by estimating the reach set based on a sample of states. If a model is available, this training set can be obtained through numerical simulation. In the absence of a model, real-life observations can be used instead. A recently proposed approach for data-based reach set approximation uses Christoffel functions to approximate the reach set. Under certain assumptions, the approximation is guaranteed to converge to the true solution. In this paper, we improve upon these results by notably improving the sample efficiency and relaxing some of the assumptions by exploiting statistical guarantees from conformal prediction with training and calibration sets. In addition, we exploit an incremental way to compute the Christoffel function to avoid the calibration set while maintaining the statistical convergence guarantees. Furthermore, our approach is robust to outliers in the training and calibration set

    Осуществление связи вузовской науки Сибири с производством и инновационных мероприятий в 70-80-е гг. ХХ в.

    Get PDF
    Отражаются проблемы, касающиеся интеграции вузовской науки Сибири с производством в 70-80-е гг. ХХ в. Анализируется деятельность институтов и университетов региона по развитию и укреплению основных организационных форм содружества науки с производством: хозяйственных договоров, комплексных творческих бригад, шефства ученых и инженеров над рабочими, участия научно-педагогических работников в консультациях на предприятиях и научно-технической пропаганде
    corecore