1,065 research outputs found

    Satisfaction of Mortgage

    Get PDF
    Satisfaction of Mortgage between J. J. Freeze to G. M. D. Bowers and B. R. Colson. The document is dated 11 April 1914

    Pathogenic Variants in Fucokinase Cause a Congenital Disorder of Glycosylation

    Get PDF
    FUK encodes fucokinase, the only enzyme capable of converting L-fucose to fucose-1-phosphate, which will ultimately be used for synthesizing GDP-fucose, the donor substrate for all fucosyltransferases. Although it is essential for fucose salvage, this pathway is thought to make only a minor contribution to the total amount of GDP-fucose. A second pathway, the major de novo pathway, involves conversion of GDP-mannose to GDP-fucose. Here we describe two unrelated individuals who have pathogenic variants in FUK and who presented with severe developmental delays, encephalopathy, intractable seizures, and hypotonia. The first individual was compound heterozygous for c.667T>C (p.Ser223Pro) and c.2047C>T (p.Arg683Cys), and the second individual was homozygous for c.2980A>C (p.Lys994Gln). Skin fibroblasts from the first individual confirmed the variants as loss of function and showed significant decreases in total GDP-[3H] fucose and [3H] fucose-1-phosphate. There was also a decrease in the incorporation of [5,6-3H]-fucose into fucosylated glycoproteins. Lys994 has previously been shown to be an important site for ubiquitin conjugation. Here, we show that loss-of-function variants in FUK cause a congenital glycosylation disorder characterized by a defective fucose-salvage pathway

    The Rogue Alpha and Beta Mission: Operations, Infrared Remote Sensing, LEO Data Processing, and Lessons Learned From Three Years on Orbit With Two Laser Communication-Equipped 3U CubeSats

    Get PDF
    The Aerospace Corporation\u27s Rogue-alpha, beta program was a rapid prototyping demonstration aimed at building and deploying an infrared remote sensing capability into low Earth orbit within 18 months. The two satellites and their data were then used for three years as an experimental testbed for future proliferated low Earth orbit (pLEO) constellations. Their launch took place on November 2, 2019, followed by boost and deployment of two identical spacecraft (Rogue-alpha and beta) by the Cygnus ISS cargo vessel into circular 460-km, 52° inclined orbits on January31, 2020. The primary sensors were 1.4-micron band, InGaAs short wavelength infrared (SWIR) cameras with640x512 pixels and a 28° field-of-view. The IR sensors were accompanied by 10-megapixel visible context cameras with a 37° field-of-view. Star sensors were also tested as nighttime imaging sensors. Three years of spacecraft and sensor operations were achieved, allowing a variety of experiments to be conducted. The first year focused on alignment and checkout of the laser communication systems, sensor calibration, and priority IR remote sensing objectives, including the study of Earth backgrounds, observation of natural gas flares, and detection of rocket launches. The second year of operations added study of environmental remote sensing targets, including severe storms, wildfires, and volcanic eruptions, while continuing to gather Earth backgrounds and rocket launch observations. The final year emphasized advanced data processing and exploitation techniques applied to collected data, using machine learning and artificial intelligence for tasks such as target tracking, frame co-registration, and stereo data exploitation. Mission operations continued in the final year, with an emphasis on collecting additional rocket launch data, and higher frame rate backgrounds data. This report summarizes the Rogue alpha, beta mission’s outcomes and presents processed IR data, including the detection and tracking of rocket launches with dynamic Earth backgrounds, embedded moving targets in background scenes, and the use of pointing-based registration to create fire line videos of severe wildfires and 3D scenes of pyrocumulonimbus clouds. Lessons learned from the experimental ConOps, data exploitation, and database curation are also summarized for application to future pLEO constellation missions

    Large Time Asymptotics in Contaminant Transport in Porous Media

    Full text link

    Remote Sensing Experiments Using the Rogue-alpha,beta CubeSats as a Constellation: High Frame Rate Environmental Observations from Agile, Taskable, Infrared and Visible Sensors in Low Earth Orbit

    Get PDF
    The Aerospace Corporation’s Rogue-alpha,beta program built and launched two 3-Unit CubeSats in 18-months, each equipped with modified commercial infrared camera payloads, visible context cameras, laser communications and precision pointing capabilities. Launched on November 2, 2019, the two spacecraft (Rogue-alpha and beta) were boosted and released from the International Space Station Cygnus NG-12 robotic resupply spacecraft on January 31, 2020 into a circular 460-km, 52° inclined orbit. The primary Rogue IR sensor is a 1.4-micron band, 640x512 pixel, 28° field of view, InGaAs short wavelength infrared (SWIR) camera. It is accompanied by a panchromatic, 10-megapixel, 37° field of view visible context camera. In addition, the narrow- and wide-field-of-view star sensors may also be utilized as nighttime sensors. During the first two years of spaceflight, the Rogue satellites conducted a series of experiments using both spacecraft to conduct cooperative remote sensing observations and to test the capabilities of the 1.4-micron water overtone band. These included: 1) fore-aft pointing using two spacecraft for stereo observations of cloud structure and altitude, 2) horizon-pointed imaging in all directions relative to the spacecraft orbit (fore, aft, port, and starboard) to maximize the imaged field of view, 3) pre-programmed point-and-stare imaging, 4) nadir-pointed operations for vicarious calibration with other satellites. All of these modes of operation are usually conducted in multi-frame collections at 1-20 frames-per-second for dozens to thousands of frames. During the mission we investigated different modes of collecting data, taking advantage of the evolving orbital spacing of the pair of CubeSats. Initial close satellite spacing allowed along-track fore-aft stereo observations of weather formations, as well as pre-programmed tip-and-queue observations, and sequential point-and-stare experiments aimed at collecting minutes of data on targets of interest. Cloud altitude was measured on weather events by simultaneous stereo observations, and by mono observations using the changing view angles during a constant point along track or slewing during a pass. Observations were collected on hurricanes, typhoons, thunderstorms, monsoon storms, and forecasted tornadic weather. Unique observations of severe wildfires were collected, exploring the capability for our 1.4micron band to detect fires during daytime, and to characterize pyrocumulonimbus clouds. Nighttime observations were also made of human lighting, infrared sources, and moonlight-illuminated clouds, including observations utilizing the Rogue satellites’ star sensors for remote sensing tests. These experiments collectively explored the possibilities for dynamically tasked, high-frame-rate, low-earth-orbit sensors to carry out weather and environmental monitoring missions in ways that differ from traditional scanned or push-broom satellite sensor systems. We will present a summary of our tasking ConOps, observations of weather events and fires, and highlight results and techniques for cloud height characterization by our two CubeSat constellation during its first two years on orbit. Our results with two satellites demonstrate possibilities for future missions using cooperative tasking in larger constellations of dynamically tasked sensors in low Earth orbit

    What helps young Christians grow in discipleship? Exploring connections between discipleship pathways and psychological type

    Get PDF
    Drawing on data provided by 299 12- to 18-year-old Baptists attending a week-long summer programme of the Canadian Baptists of Atlantic Canada, the study explores the connections between personal factors (age and sex), psychological factors (introversion, sensing, feeling, and judging), and contextual factors (church support and challenges to faith), four discipleship pathways (group activities, individual experiences, church worship, and public engagement), and two indices of Christian growth (depth of discipleship and strength of vocation). The data demonstrate that psychological factors shape preferred pathways of discipleship, that perceived church support is important for growing both depth of discipleship and strength of vocation, that perceived challenges to faith weaken depth of discipleship, that the discipleship pathway of group activities is central to growing young Christians within the Baptist tradition, and that depth of discipleship is further enhanced by the pathway of individual experience, while strength of vocation is further enhanced by the pathway of church worship
    • …
    corecore