1,916 research outputs found
MSSM A-funnel and the Galactic Center Excess: Prospects for the LHC and Direct Detection Experiments
The pseudoscalar resonance or "A-funnel" in the Minimal Supersymmetric
Standard Model~(MSSM) is a widely studied framework for explaining dark matter
that can yield interesting indirect detection and collider signals. The
well-known Galactic Center excess (GCE) at GeV energies in the gamma ray
spectrum, consistent with annihilation of a GeV dark matter
particle, has more recently been shown to be compatible with significantly
heavier masses following reanalysis of the background. In this paper, we
explore the LHC and direct detection implications of interpreting the GCE in
this extended mass window within the MSSM A-funnel framework. We find that
compatibility with relic density, signal strength, collider constraints, and
Higgs data can be simultaneously achieved with appropriate parameter choices.
The compatible regions give very sharp predictions of 200-600 GeV CP-odd/even
Higgs bosons at low tan at the LHC and spin-independent cross sections
pb at direct detection experiments. Regardless of
consistency with the GCE, this study serves as a useful template of the strong
correlations between indirect, direct, and LHC signatures of the MSSM A-funnel
region.Comment: 32 pages and 9 figure
The variety generated by order algebras
Every ordered set can be considered as an algebra in a natural way. We investigate the variety generated by order algebras. We prove, among other things, that this variety is not finitely based and, although locally finite, it is not contained in any finitely generated variety; we describe the bottom of the lattice of its subvarieties
The Paths of Quintessence
The structure of the dark energy equation of state phase plane holds
important information on the nature of the physics. We explain the bounds of
the freezing and thawing models of scalar field dark energy in terms of the
tension between the steepness of the potential vs. the Hubble drag.
Additionally, we extend the phase plane structure to modified gravity theories,
examine trajectories of models with certain properties, and categorize regions
in terms of scalar field hierarchical parameters, showing that dark energy is
generically not a slow roll phenomenon.Comment: 12 pages, 7 figures; matches PRD versio
Slow nucleation rates in Chain Inflation with QCD Axions or Monodromy
The previous proposal (by two of us) of chain inflation with the QCD axion is
shown to fail. The proposal involved a series of fast tunneling events, yet
here it is shown that tunneling is too slow. We calculate the bubble nucleation
rates for phase transitions in the thick wall limit, approximating the barrier
by a triangle. A similar problem arises in realization of chain inflation in
the string landscape that uses series of minima along the monodromy staircase
around the conifold point. The basic problem is that the minima of the
potential are too far apart to allow rapid enough tunneling in these two
models. We entertain the possibility of overcoming this problem by modifying
the gravity sector to a Brans-Dicke theory. However, one would need extremely
small values for the Brans-Dicke parameter. Many successful alternatives exist,
including other "axions" (with mass scales not set by QCD) or potentials with
comparable heights and widths that do not suffer from the problem of slow
tunneling and provide successful candidates for chain inflation.Comment: 6 pages, 1 figur
Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"
In the model of Chain Inflation, a sequential chain of coupled scalar fields
drives inflation. We consider a multidimensional potential with a large number
of bowls, or local minima, separated by energy barriers: inflation takes place
as the system tunnels from the highest energy bowl to another bowl of lower
energy, and so on until it reaches the zero energy ground state. Such a
scenario can be motivated by the many vacua in the stringy landscape, and our
model can apply to other multidimensional potentials. The ''graceful exit''
problem of Old Inflation is resolved since reheating is easily achieved at each
stage. Coupling between the fields is crucial to the scenario. The model is
quite generic and succeeds for natural couplings and parameters. Chain
inflation succeeds for a wide variety of energy scales -- for potentials
ranging from 10MeV scale inflation to GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde
Fluid Interpretation of Cardassian Expansion
A fluid interpretation of Cardassian expansion is developed. Here, the
Friedmann equation takes the form where contains
only matter and radiation (no vacuum). The function g(\rhom) returns to the
usual 8\pi\rhom/(3 m_{pl}^2) during the early history of the universe, but
takes a different form that drives an accelerated expansion after a redshift . One possible interpretation of this function (and of the right hand
side of Einstein's equations) is that it describes a fluid with total energy
density \rho_{tot} = {3 m_{pl}^2 \over 8 \pi} g(\rhom) = \rhom + \rho_K
containing not only matter density (mass times number density) but also
interaction terms . These interaction terms give rise to an effective
negative pressure which drives cosmological acceleration. These interactions
may be due to interacting dark matter, e.g. with a fifth force between
particles . Such interactions may be intrinsically four
dimensional or may result from higher dimensional physics. A fully relativistic
fluid model is developed here, with conservation of energy, momentum, and
particle number. A modified Poisson's equation is derived. A study of
fluctuations in the early universe is presented, although a fully relativistic
treatment of the perturbations including gauge choice is as yet incomplete.Comment: 25 pages, 1 figure. Replaced with published version. Title changed in
journa
Correspondence from E.B. Lovejoy, June 28, 1862
Correspondence from E.B. Lovejoy regarding absent soldiers from Androscoggin Countyhttps://digitalmaine.com/absent_soldiers/1002/thumbnail.jp
Cascade events at IceCube + DeepCore as a definitive constraint on the dark matter interpretation of the PAMELA and Fermi anomalies
Dark matter decaying or annihilating into μ^+μ^- or τ^+τ^- has been proposed as an explanation for the e^± anomalies reported by PAMELA and Fermi. Recent analyses show that IceCube, supplemented by DeepCore, will be able to significantly constrain the parameter space of decays to μ^+μ^-, and rule out decays to τ^+τ^- and annihilations to μ^+μ^- in less than five years of running. These analyses rely on measuring tracklike events in IceCube + DeepCore from down-going ν_μ. In this paper we show that by instead measuring cascade events, which are induced by all neutrino flavors, IceCube + DeepCore can rule out decays to μ^+μ^- in only three years of running, and rule out decays to τ^+τ^- and annihilation to μ^+μ^- in only one year of running. These constraints are highly robust to the choice of dark matter halo profile and independent of dark matter-nucleon crosssection
- …