119 research outputs found

    GtxA from Gallibacterium anatis, a cytolytic RTX-toxin with a novel domain organisation

    Get PDF
    Gallibacterium anatis is a pathogen in chickens and other avian species where it is a significant cause of salpingitis and peritonitis. We found that bacterial cells and cell-free, filter-sterilised culture supernatant from the haemolytic G. anatis biovar haemolytica were highly cytotoxic towards avian-derived macrophage-like cells (HD11). We obtained the genome sequence of G. anatis 12656-12 and used a rational approach to identify a gene predicted to encode a 2026 amino acid RTX-toxin, which we named GtxA (Gallibacterium toxin). The construction of a gtxA knock-out mutant showed gtxA to be responsible for G. anatis’ haemolytic and leukotoxic activity. In addition, Escherichia coli expressing gtxA and an adjacent acyltransferase, gtxC, became cytolytic. GtxA was expressed during in vitro growth and was localised in the extracellular protein fraction in a growth phase dependent manner. GtxA had an unusual modular structure; the C-terminal 1000 amino acids of GtxA were homologous to the classical pore-forming RTX-toxins in other members of Pasteurellaceae. In contrast, the N-terminal approximately 950 amino acids had few significant matches in sequence databases. Expression of truncated GtxA proteins demonstrated that the C-terminal RTX-domain had a lower haemolytic activity than the full-length toxin, indicating that the N-terminal domain was required for maximal haemolytic activity. Cytotoxicity towards HD11 cells was not detected with the C-terminal alone, suggesting that the N-terminal domain plays a critical role for the leukotoxicity

    Nisin Damages the Septal Membrane and Triggers DNA Condensation in Methicillin-Resistant <i>Staphylococcus aureus</i>

    Get PDF
    Nisin is applied as a food preservative in processed foods and has the potential to be used synergistically with antibiotics for treatment of patients infected by antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus. The present study explores the antimicrobial effect of nisin on S. aureus viability and membrane integrity and, for the first time, used super-resolution microscopy to study morphological changes induced in S. aureus cells exposed to nisin. The exposure of S. aureus to nisin caused membrane depolarization and rapid killing. Super-resolution structured-illumination microscopy and transmission electron microscopy confirmed that nisin damages the cellular membrane and causes lysis of cells. Strikingly, condensation of chromosomal DNA was observed in all cells exposed to nisin, a phenotype not previously reported for this compound. Moreover, cells exposed to nisin were significantly smaller than non-exposed cells indicating the emergence of cell shrinkage. The strong association of DNA condensation with nisin exposure indicates that nisin interferes with chromosome replication or segregation in S. aureus.Published versio

    Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio) Using a GFP-Tagged Yersinia ruckeri

    Get PDF
    Immersion-vaccines (bacterins) are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr). During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP) and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant) received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC). In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb) Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species

    The ClpXP protease is dispensable for degradation of unfolded proteins in <i>Staphylococcus aureus</i>

    Get PDF
    Abstract In living cells intracellular proteolysis is crucial for protein homeostasis, and ClpP proteases are conserved between eubacteria and the organelles of eukaryotic cells. In Staphylococcus aureus, ClpP associates to the substrate specificity factors, ClpX and ClpC forming two ClpP proteases, ClpXP and ClpCP. To address how individual ClpP proteases impact cell physiology, we constructed a S. aureus mutant expressing ClpX with an I265E substitution in the ClpP recognition tripeptide of ClpX. This mutant cannot degrade established ClpXP substrates confirming that the introduced amino acid substitution abolishes ClpXP activity. Phenotypic characterization of this mutant showed that ClpXP activity controls cell size and is required for growth at low temperature. Cells expressing the ClpXI265E variant, in contrast to cells lacking ClpP, are not sensitive to heat-stress and do not accumulate protein aggregates showing that ClpXP is dispensable for degradation of unfolded proteins in S. aureus. Consistent with this finding, transcriptomic profiling revealed strong induction of genes responding to protein folding stress in cells devoid of ClpP, but not in cells lacking only ClpXP. In the latter cells, highly upregulated loci include the urease operon, the pyrimidine biosynthesis operon, the betA-betB operon, and the pathogenicity island, SaPI5, while virulence genes were dramatically down-regulated

    The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone

    Get PDF
    Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. IMPORTANCE Lipoteichoic acid is an essential component of the Staphylococcus aureus cell envelope and an attractive target for the development of vaccines and antimicrobials directed against antibiotic-resistant Gram-positive bacteria such as methicillin-resistant S. aureus and vancomycin-resistant enterococci. In this study, we showed that the lipoteichoic acid polymer is essential for growth of S. aureus only as long as the ClpX chaperone is present in the cell. Our results indicate that lipoteichoic acid and ClpX play opposite roles in a pathway that controls two key cell division processes in S. aureus, namely, septum formation and autolytic activity. The discovery of a novel functional connection in the genetic network that controls cell division in S. aureus may expand the repertoire of possible strategies to identify compounds or compound combinations that kill antibiotic-resistant S. aureus.Peer reviewe

    Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325-4. The aim of the present study was to further characterise the mode of action of norlichexanthone and its effect on biofilm formation. We find that norlichexanthone reduces expression of both hla and RNAIII also in strain USA300. Structurally, norlichexanthone resembles ω-hydroxyemodin that recently was shown to bind the agr two component response regulator, AgrA, which controls expression of RNAIII and the phenol soluble modulins responsible for human neutrophil killing. We show that norlichexanthone reduces S. aureus toxicity towards human neutrophils and interferes directly with AgrA binding to its DNA target. In contrast to ω-hydroxyemodin however, norlichexanthone reduces staphylococcal biofilm formation. Transcriptomic analysis revealed that genes regulated by the SaeRS two-component system are repressed by norlichexanthone when compared to untreated cells, an effect that was mitigated in strain Newman carrying a partially constitutive SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation
    • …
    corecore