1,679 research outputs found
A solution for galactic disks with Yukawian gravitational potential
We present a new solution for the rotation curves of galactic disks with
gravitational potential of the Yukawa type. We follow the technique employed by
Toomre in 1963 in the study of galactic disks in the Newtonian theory. This new
solution allows an easy comparison between the Newtonian solution and the
Yukawian one. Therefore, constraints on the parameters of theories of
gravitation can be imposed, which in the weak field limit reduce to Yukawian
potentials. We then apply our formulae to the study of rotation curves for a
zero-thickness exponential disk and compare it with the Newtonian case studied
by Freeman in 1970. As an application of the mathematical tool developed here,
we show that in any theory of gravity with a massive graviton (this means a
gravitational potential of the Yukawa type), a strong limit can be imposed on
the mass (m_g) of this particle. For example, in order to obtain a galactic
disk with a scale length of b ~ 10 kpc, we should have a massive graviton of
m_g << 10^{-59} g. This result is much more restrictive than those inferred
from solar system observations.Comment: 7 pages; 1 eps figure; to appear in General Relativity and
Gravitatio
Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich Sn on Ni
Evaporation residue cross sections have been measured with neutron-rich
radioactive Sn beams on Ni in the vicinity of the Coulomb
barrier. The average beam intensity was particles per second
and the smallest cross section measured was less than 5 mb. Large subbarrier
fusion enhancement was observed. Coupled-channels calculations taking into
account inelastic excitation and neutron transfer underpredict the measured
cross sections below the barrier.Comment: 4 pages including 1 table and 3 figure
Targeting lentiviral vectors to antigen-specific immunoglobulins
Gene transfer into B cells by lentivectors can provide an alternative approach to managing B lymphocyte malignancies and autoreactive B cell-mediated autoimmune diseases. These pathogenic B cell Populations can be distinguished by their surface expression of monospecific immunoglobulin. Development of a novel vector system to deliver genes to these specific B cells could improve the safety and efficacy of gene therapy. We have developed an efficient rnethod to target lentivectors to monospecific immunoglobulin-expressing cells in vitro and hi vivo. We were able to incorporate a model antigen CD20 and a fusogenic protein derived from the Sindbis virus as two distinct molecules into the lentiviral Surface. This engineered vector could specifically bind to cells expressing Surface immunoglobulin recognizing CD20 (αCD20), resulting in efficient transduction of target cells in a cognate antigen-dependent manner in vitro, and in vivo in a xenografted tumor model. Tumor suppression was observed in vivo, using the engineered lentivector to deliver a suicide gene to a xenografted tumor expressing αCD20. These results show the feasibility of engineering lentivectors to target immunoglobulin-specific cells to deliver a therapeutic effect. Such targeting lentivectors also Could potentially be used to genetically mark antigen-specific B cells in vivo to study their B cell biology
Modified gravity without dark matter
On an empirical level, the most successful alternative to dark matter in
bound gravitational systems is the modified Newtonian dynamics, or MOND,
proposed by Milgrom. Here I discuss the attempts to formulate MOND as a
modification of General Relativity. I begin with a summary of the
phenomenological successes of MOND and then discuss the various covariant
theories that have been proposed as a basis for the idea. I show why these
proposals have led inevitably to a multi-field theory. I describe in some
detail TeVeS, the tensor-vector-scalar theory proposed by Bekenstein, and
discuss its successes and shortcomings. This lecture is primarily pedagogical
and directed to those with some, but not a deep, background in General
RelativityComment: 28 pages, 10 figures, lecture given at Third Aegean Summer School,
The Invisible Universe: Dark Matter and Dark Energy, minor errors corrected,
references update
Deformation effects in Ni nuclei produced in Si+Si at 112 MeV
Velocity and energy spectra of the light charged particles (protons and
-particles) emitted in the Si(E = 112 MeV) + Si
reaction have been measured at the Strasbourg VIVITRON Tandem facility. The
ICARE charged particle multidetector array was used to obtain exclusive spectra
of the light particles in the angular range 15 - 150 degree and to determine
the angular correlations of these particles with respect to the emission angles
of the evaporation residues. The experimental data are analysed in the
framework of the statistical model. The exclusive energy spectra of
-particles emitted from the Si + Si compound system are
generally well reproduced by Monte Carlo calculations using spin-dependent
level densities. This spin dependence approach suggests the onset of large
deformations at high spin. A re-analysis of previous -particle data
from the Si + Si compound system, using the same spin-dependent
parametrization, is also presented in the framework of a general discussion of
the occurrence of large deformation effects in the A ~ 60 mass region.Comment: 25 pages, 6 figure
High resolution infrared absorption spectra, crystal field, and relaxation processes in CsCdBr_3:Pr^3+
High resolution low-temperature absorption spectra of 0.2% Pr^3+ doped
CsCdBr_3 were measured in the spectral region 2000--7000 cm-1. Positions and
widths of the crystal field levels within the 3H5, 3H4, 3F2, and 3F3 multiplets
of the Pr^3+ main center have been determined. Hyperfine structure of several
spectral lines has been found. Crystal field calculations were carried out in
the framework of the semiphenomenological exchange charge model (ECM).
Parameters of the ECM were determined by fitting to the measured total
splittings of the 3H4 and 3H6 multiplets and to the observed in this work
hyperfine splittings of the crystal field levels. One- and two-phonon
relaxation rates were calculated using the phonon Green's functions of the
perfect (CsCdBr_3) and locally perturbed (impurity dimer centers in
CsCdBr_3:Pr^3+) crystal lattice. Comparison with the measured linewidths
confirmed an essential redistribution of the phonon density of states in
CsCdBr_3 crystals doped with rare-earth ions.Comment: 16 pages, 5 tables, 3 figure
Structure, mass and stability of galactic disks
In this review I concentrate on three areas related to structure of disks in
spiral galaxies. First I will review the work on structure, kinematics and
dynamics of stellar disks. Next I will review the progress in the area of
flaring of HI layers. These subjects are relevant for the presence of dark
matter and lead to the conclusion that disk are in general not `maximal', have
lower M/L ratios than previously suspected and are locally stable w.r.t.
Toomre's Q criterion for local stability. I will end with a few words on
`truncations' in stellar disks.Comment: Invited review at "Galaxies and their Masks" for Ken Freeman's 70-th
birthday, Sossusvlei, Namibia, April 2010. A version with high-res. figures
is available at
http://www.astro.rug.nl/~vdkruit/jea3/homepage/Namibiachapter.pd
Highly deformed Ca configurations in Si + C
The possible occurrence of highly deformed configurations in the Ca
di-nuclear system formed in the Si + C reaction is investigated
by analyzing the spectra of emitted light charged particles. Both inclusive and
exclusive measurements of the heavy fragments (A 10) and their
associated light charged particles (protons and particles) have been
made at the IReS Strasbourg {\sc VIVITRON} Tandem facility at bombarding
energies of Si) = 112 MeV and 180 MeV by using the {\sc ICARE}
charged particle multidetector array. The energy spectra, velocity
distributions, and both in-plane and out-of-plane angular correlations of light
charged particles are compared to statistical-model calculations using a
consistent set of parameters with spin-dependent level densities. The analysis
suggests the onset of large nuclear deformation in Ca at high spin.Comment: 33 pages, 11 figure
Acute pancreatitis:a comparison of intervention rates precipitated by early vs guideline CT scan timing
Aim: To assess whether CT scanning earlier in acute pancreatitis (AP) precipitates any surgical or radiological intervention.Materials and Methods: A single centre retrospective cohort study comparing intervention rates in AP precipitated by early (<6 day of admission, n=100) and UK guideline (≥6 day of admission, n=103) CT scans.Results: No intervention was precipitated by scanning before the 6th day of admission in AP. A statistically significant larger number of interventions were precipitated when scanning on the 6th day or later (P<0.05). Of note this study was conducted using day of admission, rather than day of symptom onset. 6 patients underwent repeat scanning in the same admission after an early scan.Conclusion: Scanning before the 6th day of admission does not lead to earlier intervention. Such early scans waste resources and may offer false reassurance to clinicians
- …
