29,813 research outputs found

    Robust CNOT gates from almost any interaction

    Get PDF
    There are many cases where the interaction between two qubits is not precisely known, but single qubit operations are available. In this paper we show how, regardless of an incomplete knowledge of the strength or form of the interaction between two qubits, it is often possible to construct a CNOT gate which has arbitrarily high fidelity. In particular, we show that oscillations in the strength of the exchange interaction in solid state Si and Ge structures are correctable.Comment: 5 pages, 2 figure

    The Shape of Dark Matter Haloes II. The Galactus HI Modelling & Fitting Tool

    Get PDF
    We present a new HI modelling tool called \textsc{Galactus}. The program has been designed to perform automated fits of disc-galaxy models to observations. It includes a treatment for the self-absorption of the gas. The software has been released into the public domain. We describe the design philosophy and inner workings of the program. After this, we model the face-on galaxy NGC2403, using both self-absorption and optically thin models, showing that self-absorption occurs even in face-on galaxies. It is shown that the maximum surface brightness plateaus seen in Paper I of this series are indeed signs of self-absorption. The apparent HI mass of an edge-on galaxy can be drastically lower compared to that same galaxy seen face-on. The Tully-Fisher relation is found to be relatively free from self-absorption issues.Comment: Accepted for publication by Monthly Notices RAS. Hi-res. version available at www.astro.rug.nl/~vdkruit/Petersetal-II.pd

    A Normal Stellar Disk in the Galaxy Malin 1

    Get PDF
    Since its discovery, Malin 1 has been considered the prototype and most extreme example of the class of giant low surface brightness disk galaxies. Examination of an archival Hubble Space Telescope I-band image reveals that Malin 1 contains a normal stellar disk that was not previously recognized, having a central I-band surface brightness of mu_0 = 20.1 mag arcsec^-2 and a scale length of 4.8 kpc. Out to a radius of ~10 kpc, the structure of Malin 1 is that of a typical SB0/a galaxy. The remarkably extended, faint outer structure detected out to r~100 kpc appears to be a photometrically distinct component and not a simple extension of the inner disk. In terms of its disk scale length and central surface brightness, Malin 1 was originally found to be a very remote outlier relative to all other known disk galaxies. The presence of a disk of normal size and surface brightness in Malin 1 suggests that such extreme outliers in disk properties probably do not exist, but underscores the importance of the extended outer disk regions for a full understanding of the structure and formation of spiral galaxies.Comment: 13 pages, 7 figures. To appear in AJ. Typographical error correcte

    The impact of a school-based water supply and treatment, hygiene, and sanitation programme on pupil diarrhoea: a cluster-randomized trial.

    Get PDF
    The impact of improved water, sanitation, and hygiene (WASH) access on mitigating illness is well documented, although impact of school-based WASH on school-aged children has not been rigorously explored. We conducted a cluster-randomized trial in Nyanza Province, Kenya to assess the impact of a school-based WASH intervention on diarrhoeal disease in primary-school pupils. Two study populations were used: schools with a nearby dry season water source and those without. Pupils attending 'water-available' schools that received hygiene promotion and water treatment (HP&WT) and sanitation improvements showed no difference in period prevalence or duration of illness compared to pupils attending control schools. Those pupils in schools that received only the HP&WT showed similar results. Pupils in 'water-scarce' schools that received a water-supply improvement, HP&WT and sanitation showed a reduction in diarrhoea incidence and days of illness. Our study revealed mixed results on the impact of improvements to school WASH improvements on pupil diarrhoea

    Schemes for Parallel Quantum Computation Without Local Control of Qubits

    Get PDF
    Typical quantum computing schemes require transformations (gates) to be targeted at specific elements (qubits). In many physical systems, direct targeting is difficult to achieve; an alternative is to encode local gates into globally applied transformations. Here we demonstrate the minimum physical requirements for such an approach: a one-dimensional array composed of two alternating 'types' of two-state system. Each system need be sensitive only to the net state of its nearest neighbors, i.e. the number in state 1 minus the number in state 2. Additionally, we show that all such arrays can perform quite general parallel operations. A broad range of physical systems and interactions are suitable: we highlight two potential implementations.Comment: 12 pages + 3 figures. Several small corrections mad

    Forest resource information system, phase 3

    Get PDF
    There are no author-identified significant results in this report

    Infrared phonon dynamics of multiferroic BiFeO3 single crystal

    Full text link
    We discuss the first infrared reflectivity measurement on a BiFeO3 single crystal between 5 K and room temperature. The 9 predicted ab-plane E phonon modes are fully and unambiguously determined. The frequencies of the 4 A1 c-axis phonons are found. These results settle issues between theory and data on ceramics. Our findings show that the softening of the lowest frequency E mode is responsible for the temperature dependence of the dielectric constant, indicating that the ferroelectric transition in BiFeO3 is soft-mode driven.Comment: 5 pages (figures included

    XMM-Newton Archival Study of the ULX Population in Nearby Galaxies

    Full text link
    We present the results of an archival XMM-Newton study of the bright X-ray point sources (L_X > 10^38 erg/s) in 32 nearby galaxies. From our list of approximately 100 point sources, we attempt to determine if there is a low-state counterpart to the Ultraluminous X-ray (ULX) population, searching for a soft-hard state dichotomy similar to that known for Galactic X-ray binaries and testing the specific predictions of the IMBH hypothesis. To this end, we searched for "low-state" objects, which we defined as objects within our sample which had a spectrum well fit by a simple absorbed power law, and "high-state" objects, which we defined as objects better fit by a combined blackbody and a power law. Assuming that ``low-state'' objects accrete at approximately 10% of the Eddington luminosity (Done & Gierlinski 2003) and that "high-state" objects accrete near the Eddington luminosity we further divided our sample of sources into low and high state ULX sources. We classify 16 sources as low-state ULXs and 26 objects as high-state ULXs. As in Galactic black hole systems, the spectral indices, Gamma, of the low-state objects, as well as the luminosities, tend to be lower than those of the high-state objects. The observed range of blackbody temperatures for the high state is 0.1-1 keV, with the most luminous systems tending toward the lowest temperatures. We therefore divide our high-state ULXs into candidate IMBHs (with blackbody temperatures of approximately 0.1 keV) and candidate stellar mass BHs (with blackbody temperatures of approximately 1.0 keV). A subset of the candidate stellar mass BHs have spectra that are well-fit by a Comptonization model, a property similar of Galactic BHs radiating in the "very-high" state near the Eddington limit.Comment: 54 pages, submitted to ApJ (March 2005), accepted (May 2006); changes to organization of pape
    • 

    corecore