24,982 research outputs found

    Wiskott-Aldrich Syndrome (WAS) and Dedicator of Cytokinesis 8- (DOCK8) Deficiency

    Get PDF
    Both Wiskott-Aldrich syndrome (WAS) and dedicator of cytokinesis 8 (DOCK8) deficiency are primary immunodeficiency diseases caused by mutations in genes that result in defective organization of the cytoskeleton in hematopoietic tissues. They share some overlapping features such as a combined immunodeficiency, eczema and a predisposition to autoimmunity and malignancy, but also have some unique features that make them relatively easy to diagnose by clinical means. Both diseases can be cured by HSCT in a large proportion of patients. In WAS it is sometimes difficult to establish an indication for HSCT due to the large variability of disease severity, while HSCT is probably indicated in all patients affected by DOCK8 deficiency. There is considerably more published HSCT experience for WAS than for DOCK8 deficiency, but many open questions remain, which will be discussed in this review

    The HI and Ionized Gas Disk of the Seyfert Galaxy NGC 1144 = Arp 118: A Violently Interacting Galaxy with Peculiar Kinematics

    Get PDF
    We present observations of the distribution and kinematics of neutral and ionized gas in NGC 1144, a galaxy that forms part of the Arp 118 system. Ionized gas is present over a huge spread in velocity (1100 km/s) in the disk of NGC 1144, but HI emission is detected over only 1/3 of this velocity range, in an area that corresponds to the NW half of the disk. In the nuclear region of NGC 1144, a jump in velocity in the ionized gas component of 600 km/s is observed. Faint, narrow HI absorption lines are also detected against radio sources in the SE part of the disk of NGC 1144, which includes regions of massive star formation and a Seyfert nucleus. The peculiar HI distribution, which is concentrated in the NW disk, seems to be the inverse of the molecular distribution which is concentrated in the SE disk. Although this may partly be the result of the destruction of HI clouds in the SE disk, there is circumstantial evidence that the entire HI emission spectrum of NGC 1144 is affected by a deep nuclear absorption line covering a range of 600 km/s, and is likely blueshifted with respect to the nucleus. In this picture, a high column-density HI stream is associated with the nuclear ionized gas velocity discontinuity, and the absorption effectively masks any HI emission that would be present in the SE disk of NGC 1144.Comment: manuscript, arp118.ps: 28 pages; 1 Table: arp118.tab1.ps; 16 Figures: arp118.fig1-16.ps; Accepted to Ap

    Peatlands and the carbon cycle: from local processes to global implications - a synthesis

    Get PDF
    Peatlands cover only 3% of the Earth's land surface but boreal and subarctic peatlands store about 15-30% of the world's soil carbon ( C) as peat. Despite their potential for large positive feedbacks to the climate system through sequestration and emission of greenhouse gases, peatlands are not explicitly included in global climate models and therefore in predictions of future climate change. In April 2007 a symposium was held in Wageningen, the Netherlands, to advance our understanding of peatland C cycling. This paper synthesizes the main findings of the symposium, focusing on (i) small-scale processes, (ii) C fluxes at the landscape scale, and (iii) peatlands in the context of climate change. The main drivers controlling most are related to some aspects of hydrology. Despite high spatial and annual variability in Net Ecosystem Exchange ( NEE), the differences in cumulative annual NEE are more a function of broad scale geographic location and physical setting than internal factors, suggesting the existence of strong feedbacks. In contrast, trace gas emissions seem mainly controlled by local factors. Key uncertainties remain concerning the existence of perturbation thresholds, the relative strengths of the CO2 and CH4 feedback, the links among peatland surface climate, hydrology, ecosystem structure and function, and trace gas biogeochemistry as well as the similarity of process rates across peatland types and climatic zones. Progress on these research areas can only be realized by stronger co-operation between disciplines that address different spatial and temporal scales

    Principles of Control for Decoherence-Free Subsystems

    Get PDF
    Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians theoretically exist that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFS. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two-physical-qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.Comment: 12 pages, 7 figure

    Recovering Intrinsic Images from a Single Image

    Get PDF
    We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic images from a single image. Using both color information and a classifier trained to recognize gray-scale patterns, each image derivative is classified as being caused by shading or a change in the surface's reflectance. Generalized Belief Propagation is then used to propagate information from areas where the correct classification is clear to areas where it is ambiguous. We also show results on real images

    Bostonia. Volume 6

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Theory of Coupled Multipole Moments Probed by X-ray Scattering in CeB6_6

    Full text link
    A minimal model for multipole orders in CeB6_6 shows that degeneracy of the quadrupole order parameters and strong spin-orbit coupling lead to peculiar temperature and magnetic-field dependences of the X-ray reflection intensity at superlattice Bragg points. Furthermore, the intensity depends sensitively on the surface direction. These theoretical results explain naturally recent X-ray experiments in phases II and III of CeB6_6. It is predicted that under weak magnetic field perpendicular to the (111) surface, the reflection intensity should change non-monotonically as a function of temperature.Comment: 4 pages, 5 figure
    corecore