302 research outputs found

    Anomaly Cancellation in Supergravity with Fayet-Iliopoulos Couplings

    Get PDF
    We review and clarify the cancellation conditions for gauge anomalies which occur when N=1, D=4 supergravity is coupled to a Kahler non-linear sigma-model with gauged isometries and Fayet-Iliopoulos couplings. For a flat sigma-model target space and vanishing Fayet-Iliopoulos couplings, consistency requires just the conventional anomaly cancellation conditions. A consistent model with non-vanishing Fayet-Iliopoulos couplings is unlikely unless the Green-Schwarz mechanism is used. In this case the U(1) gauge boson becomes massive and the D-term potential receives corrections. A Green-Schwarz mechanism can remove both the abelian and certain non-abelian anomalies in models with a gauge non-invariant Kahler potential.Comment: 27 page

    Quasilocality of joining/splitting strings from coherent states

    Full text link
    Using the coherent state formalism we calculate matrix elements of the one-loop non-planar dilatation operator of N=4{\cal N}=4 SYM between operators dual to folded Frolov-Tseytlin strings and observe a curious scaling behavior. We comment on the {\it qualitative} similarity of our matrix elements to the interaction vertex of a string field theory. In addition, we present a solvable toy model for string splitting and joining. The scaling behaviour of the matrix elements suggests that the contribution to the genus one energy shift coming from semi-classical string splitting and joining is small.Comment: 17 pages, 7 figures in 11 file

    Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses

    Get PDF
    Protein function frequently involves conformational changes with large amplitude on timescales which are difficult and computationally expensive to access using molecular dynamics. In this paper, we report on the combination of three computationally inexpensive simulation methods-normal mode analysis using the elastic network model, rigidity analysis using the pebble game algorithm, and geometric simulation of protein motion-to explore conformational change along normal mode eigenvectors. Using a combination of ELNEMO and FIRST/FRODA software, large-amplitude motions in proteins with hundreds or thousands of residues can be rapidly explored within minutes using desktop computing resources. We apply the method to a representative set of six proteins covering a range of sizes and structural characteristics and show that the method identifies specific types of motion in each case and determines their amplitude limits.Comment: 34 pages, 22 Figures, Phys. Biol. 9 (2012

    Entanglement, Bell Inequalities and Decoherence in Particle Physics

    Full text link
    We demonstrate the relevance of entanglement, Bell inequalities and decoherence in particle physics. In particular, we study in detail the features of the ``strange'' K0Kˉ0K^0 \bar K^0 system as an example of entangled meson--antimeson systems. The analogies and differences to entangled spin--1/2 or photon systems are worked, the effects of a unitary time evolution of the meson system is demonstrated explicitly. After an introduction we present several types of Bell inequalities and show a remarkable connection to CP violation. We investigate the stability of entangled quantum systems pursuing the question how possible decoherence might arise due to the interaction of the system with its ``environment''. The decoherence is strikingly connected to the entanglement loss of common entanglement measures. Finally, some outlook of the field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids, 42. Internationale Universit\"atswochen f\"ur Theoretische Physik, Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in Physics, Springer Verlag, 45 page

    Universal Hidden Supersymmetry in Classical Mechanics and its Local Extension

    Get PDF
    We review here a path-integral approach to classical mechanics and explore the geometrical meaning of this construction. In particular we bring to light a universal hidden BRS invariance and its geometrical relevance for the Cartan calculus on symplectic manifolds. Together with this BRS invariance we also show the presence of a universal hidden genuine non-relativistic supersymmetry. In an attempt to understand its geometry we make this susy local following the analogous construction done for the supersymmetric quantum mechanics of Witten.Comment: 6 pages, latex, Volkov Memorial Proceeding

    Archimedean-like colloidal tilings on substrates with decagonal and tetradecagonal symmetry

    Full text link
    Two-dimensional colloidal suspensions subject to laser interference patterns with decagonal symmetry can form an Archimedean-like tiling phase where rows of squares and triangles order aperiodically along one direction [J. Mikhael et al., Nature 454, 501 (2008)]. In experiments as well as in Monte-Carlo and Brownian dynamics simulations, we identify a similar phase when the laser field possesses tetradecagonal symmetry. We characterize the structure of both Archimedean-like tilings in detail and point out how the tilings differ from each other. Furthermore, we also estimate specific particle densities where the Archimedean-like tiling phases occur. Finally, using Brownian dynamics simulations we demonstrate how phasonic distortions of the decagonal laser field influence the Archimedean-like tiling. In particular, the domain size of the tiling can be enlarged by phasonic drifts and constant gradients in the phasonic displacement. We demonstrate that the latter occurs when the interfering laser beams are not adjusted properly

    Fivebranes and 4-manifolds

    Get PDF
    We describe rules for building 2d theories labeled by 4-manifolds. Using the proposed dictionary between building blocks of 4-manifolds and 2d N=(0,2) theories, we obtain a number of results, which include new 3d N=2 theories T[M_3] associated with rational homology spheres and new results for Vafa-Witten partition functions on 4-manifolds. In particular, we point out that the gluing measure for the latter is precisely the superconformal index of 2d (0,2) vector multiplet and relate the basic building blocks with coset branching functions. We also offer a new look at the fusion of defect lines / walls, and a physical interpretation of the 4d and 3d Kirby calculus as dualities of 2d N=(0,2) theories and 3d N=2 theories, respectivelyComment: 81 pages, 18 figures. v2: misprints corrected, clarifications and references added. v3: additions and corrections about lens space theory, 4-manifold gluing, smooth structure

    User-friendly tail bounds for sums of random matrices

    Get PDF
    This paper presents new probability inequalities for sums of independent, random, self-adjoint matrices. These results place simple and easily verifiable hypotheses on the summands, and they deliver strong conclusions about the large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for the norm of a sum of random rectangular matrices follow as an immediate corollary. The proof techniques also yield some information about matrix-valued martingales. In other words, this paper provides noncommutative generalizations of the classical bounds associated with the names Azuma, Bennett, Bernstein, Chernoff, Hoeffding, and McDiarmid. The matrix inequalities promise the same diversity of application, ease of use, and strength of conclusion that have made the scalar inequalities so valuable.Comment: Current paper is the version of record. The material on Freedman's inequality has been moved to a separate note; other martingale bounds are described in Caltech ACM Report 2011-0
    corecore