129 research outputs found

    Geometric Aspects of D-branes and T-duality

    Get PDF
    We explore the differential geometry of T-duality and D-branes. Because D-branes and RR-fields are properly described via K-theory, we discuss the (differential) K-theoretic generalization of T-duality and its application to the coupling of D-branes to RR-fields. This leads to a puzzle involving the transformation of the A-roof genera in the coupling.Comment: 26 pages, JHEP format, uses dcpic.sty; v2: references added, v3: minor change

    Relating branes and matrices

    Full text link
    We construct a general map between a Dp-brane with magnetic flux and a matrix configuration of D0-branes, by showing how one can rewrite the boundary state of the Dp-brane in terms of its D0-brane constituents. This map gives a simple prescription for constructing the matrices of fuzzy spaces corresponding to branes of arbitrary shape and topology. Since we explicitly identify the D0-brane degrees of freedom on the brane, we also derive the D0-brane charge of the brane in a very direct way including the A-genus term. As a check on our formalism, we use our map to derive the abelian-Born-Infeld equations of motion from the action of the D0-brane matrices.Comment: 28 pages, Late

    A Class of Topological Actions

    Full text link
    We review definitions of generalized parallel transports in terms of Cheeger-Simons differential characters. Integration formulae are given in terms of Deligne-Beilinson cohomology classes. These representations of parallel transport can be extended to situations involving distributions as is appropriate in the context of quantized fields.Comment: 41 pages, no figure

    Geometric K-Homology of Flat D-Branes

    Full text link
    We use the Baum-Douglas construction of K-homology to explicitly describe various aspects of D-branes in Type II superstring theory in the absence of background supergravity form fields. We rigorously derive various stability criteria for states of D-branes and show how standard bound state constructions are naturally realized directly in terms of topological K-cycles. We formulate the mechanism of flux stabilization in terms of the K-homology of non-trivial fibre bundles. Along the way we derive a number of new mathematical results in topological K-homology of independent interest.Comment: 45 pages; v2: References added; v3: Some substantial revision and corrections, main results unchanged but presentation improved, references added; to be published in Communications in Mathematical Physic

    D-branes, Matrix Theory and K-homology

    Get PDF
    In this paper, we study a new matrix theory based on non-BPS D-instantons in type IIA string theory and D-instanton - anti D-instanton system in type IIB string theory, which we call K-matrix theory. The theory correctly incorporates the creation and annihilation processes of D-branes. The configurations of the theory are identified with spectral triples, which are the noncommutative generalization of Riemannian geometry a la Connes, and they represent the geometry on the world-volume of higher dimensional D-branes. Remarkably, the configurations of D-branes in the K-matrix theory are naturally classified by a K-theoretical version of homology group, called K-homology. Furthermore, we argue that the K-homology correctly classifies the D-brane configurations from a geometrical point of view. We also construct the boundary states corresponding to the configurations of the K-matrix theory, and explicitly show that they represent the higher dimensional D-branes.Comment: 53 pages, corrected a few typos, version published in JHE

    D6-branes and torsion

    Full text link
    The D6-brane spectrum of type IIA vacua based on twisted tori and RR background fluxes is analyzed. In particular, we compute the torsion factors of the (co)homology groups H_n and describe the effect that they have on D6-brane physics. For instance, the fact that H_3 contains Z_N subgroups explains why RR tadpole conditions are affected by geometric fluxes. In addition, the presence of torsional (co)homology shows why some D6-brane moduli are lifted, and it suggests how the D-brane discretum appears in type IIA flux compactifications. Finally, we give a clear, geometrical understanding of the Freed-Witten anomaly in the present type IIA setup, and discuss its consequences for the construction of semi-realistic flux vacua.Comment: 35 pages, 1 figure. One reference adde

    Branes on Generalized Calibrated Submanifolds

    Full text link
    We extend previous results on generalized calibrations to describe supersymmetric branes in supergravity backgrounds with diverse fields turned on, and provide several new classes of examples. As an important application, we show that supersymmetric D-branes in compactifications with field strength fluxes, and on SU(3)-structure spaces, wrap generalized calibrated submanifolds, defined by simple conditions in terms of the underlying globally defined, but non-closed, 2- and 3-forms. We provide examples where the geometric moduli of D-branes (for instance D7-branes in 3-form flux configurations) are lifted by the generalized calibration condition. In addition, we describe supersymmetric D6-branes on generalized calibrated 3-submanifolds of half-flat manifolds, which provide the mirror of B-type D-branes in IIB CY compactifications with 3-form fluxes. Supersymmetric sets of such D-branes carrying no homology charges are mirror to supersymmetric sets of D-branes which are homologically non-trivial, but trivial in K-theory. As an additional application, we describe models with chiral gauge sectors, realized in terms of generalized calibrated brane box configurations of NS- and D5-branes, which are supersymmetric but carry no charges, so that no orientifold planes are required in the compactification.Comment: 40 pages, 3 figures, references adde

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore