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1. Introduction

A background for perturbative string theory is given by a two dimensional conformal

field theory. When that field theory possesses a compact Abelian symmetry, it can be

gauged. Through a process known as Abelian duality (see, for example, [1]), the gauge

field can be integrated out resulting in a new background that also possesses a compact

Abelian symmetry. This duality is called T-duality. In its simplest form, it exchanges

a circle of radius R with a circle of radius α′/R. More generally, Buscher has derived

transformation rules for nonlinear sigma models in [2, 3, 4]. One can also see T-duality

from the target space point of view by compactifying supergravity on a circle. In that

context, the transformation rules have been derived in [5, 6].

In the above references,1 the transformation of the Ramond-Ramond fields is de-

scribed in components. It was soon recognized in, for example, [9, 15], that these rules

can be written in a more geometric form. In particular, T-duality is a duality between

two circle bundles over a given base. We can form the fiber product which is a torus

1For another derivation, see [7, 8].
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bundle over the base whose fiber is the product of the fibers of the two circle bundles.

Let us denote the T-dual pair of circle bundles by M and M ′ with base B. Then, the

fiber product is written as M ×B M ′. The Buscher rules are equivalent to taking the

RR-potential on M (chosen to be independent of the fiber direction), multiplying it by

a particular form on M ×B M ′ and then integrating over the fiber of M . This gives a

RR-potential on M ′ which is the T-dual field.

The simplest version of the coupling of a D-brane in type IIA or IIB string theory

to background RR-fields can be written as follows
∫

X

eBC . (1.1)

Here C is the total RR-potential, and B is the NSNS-potential which is globally defined

on the brane worldvolume because the Freed-Witten anomaly cancellation condition

ensures that the NSNS-field strength H is trivializable on the D-brane. This formula

is incomplete in many ways. For example, we could add a gauge field on the D-

brane. For a single D-brane, this is accomplished by replacing B by the gauge-invariant

combination B + F . For a stack of D-branes, however, we have a non-Abelian gauge

field, and we need to add a more complicated set of terms due to Myers [10]. We

will ignore these terms here, although their incorporation into this formalism is an

interesting puzzle. Instead, we will concentrate on certain α′ corrections to (1.1). In

particular, these have a topological character and are usually given as2

∫

X

√
Â(TX)

Â(NX)
eBC , (1.2)

where NX is the normal bundle to the D-brane, X .

The topological nature of these corrections arises because they can be derived by

anomaly inflow arguments [11, 12]. It is important to note that, while the total anomaly

is given by the integral over a product of characteristic classes and is independent of

the choice of forms that represent those classes, as eBC is not closed, (1.2) depends on

the explicit form of the A-roof genus and not just on its cohomology class. Thus, it is

an interesting question to ask the specific form of the above corrections. For example,

one could form the A-roof genus out of the Levi-Civita connection, an H-connection or

some other connection on the bundles associated to the tangent and normal bundles to

X .

To better understand the coupling (1.2), recall that the correct quantization of D-

branes [13] and RR-fluxes [14] is in terms of K-theory rather than ordinary cohomology.

2There are some subtle contributions to this formula relating to spinc structures and self-duality

that we are neglecting.

– 2 –



In this language, the brane coupling is given by the pairing of the K-theory class

representing the brane with the K-theory class representing the RR-field. This pairing

is related to index theory and naturally incorporates the terms involving the A-roof

genus. Thus, as opposed to integrating a differential form over the fiber to obtain our

T-dual fields, we should instead do this integral in K-theory. A version of this appears

in [9] and is exploited extensively in [15]. However, life is not quite this simple. It

is the RR-charge that is a class in K-theory. The RR-potential is instead part of a

class in differential K-theory, a generalization of K-theory which not only includes the

quantized flux, but also the RR-field itself.3 In addition, because we have a nontrivial

H-flux, we must use twisted differential K-theory. The goal of this paper is to explore

how T-duality of D-branes, RR-fields and their couplings can all be viewed in light of

the geometrical T-duality transformation. We will find various conditions that lead

to invariance of the D-brane coupling under T-duality and discuss how they relate

to the K-theoretic description of D-branes and RR-fields. As we discuss in section

6, these relations are physically mysterious. While they are useful mathematically,

they are surely not the complete story for the physics and may not even be correct

in that context. It is interesting to note, however, that from two somewhat different

directions, we arrive at the condition that, when a geometric background has a free

Abelian symmetry, the ratio of A-roof genera in (1.2) is a form pulled back from the

base of the circle bundle. Something akin to this has been shown to hold in some

examples with N = 2 supersymmetry in the heterotic string [17]. This obviously has

consequences towards the ambiguity discussed in the previous paragraph. We leave the

proper interpretation of these conditions as a puzzle.

This paper is organized as follows. The first three sections are devoted to differential

geometric aspects of T-duality. Much of this material is well-known, but we hope that a

unified presentation in a geometric language will be helpful for the reader. In section 2,

we rewrite the Buscher rules in a geometric form and give the geometry of T-dual pairs

of D-branes. In section 3, we see how the B ↔ F gauge invariance behaves under T-

duality. In section 4, we show that the Buscher rules preserve the self-duality constraint

on the RR-fields paying special attention to the signs that arise. The remainder of the

paper is devoted to the K-theoretic aspects of T-duality. In section 5, we recall how the

coupling (1.2) can be interpreted as a pairing in K-theory, and we give a K-theoretic

version of the T-duality transformation. In section 6, we derive certain conditions

under which T-duality preserves the brane coupling, and we discuss the import of

these conditions. In section 7, we show that, if the Buscher rules are uncorrected,

the pairing in K-theory is preserved by T-duality. Finally, in section 8, we derive a

3For a nice introduction to the differential cohomology and differential K-theory used in this paper,

please see [16].
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condition such that the geometric T-duality transformation can be applied to branes

to give the expected results. Combined with the results of sections 5 and 8, this gives

another demonstration of the invariance of the D-brane coupling.

2. The setup

We will begin by making precise the relation between the Buscher rules and the in-

tegration over the fiber product described in the introduction. Our spacetime M is a

circle bundle over B with metric

ds2M = ds2B + e2φ(b)(dθ + A)2 .

Thus, A = dθ+A is a connection on the circle bundle M , and dA = e where e = e(M)

is the Euler class of M . We also have an H-flux given by

H = −γ +A∧λ ,

where λ is a closed two-form on B, and γ is a three-form on B such that dγ = e∧λ,

implying that H is closed.

The T-dual geometry is a new circle bundle M ′ over B with Euler class λ. As a

general rule, we will use primes to denote T-dual quantities. To use the Buscher rules,

we first note that locally

Aµ =
Gµθ

Gθθ

.

Similarly, we can locally trivialize

H = dB with B = β −A∧α .

In components, we have

B‖ = β −A∧α , Bθ = α ,

where we have set B = B‖ + Bθ ∧ dθ with B‖ the component of B along the base, B,

and Bθ the component along the fiber. This implies that

λ = dα , γ = e ∧ α− dβ .

Writing the coordinate for the T-dual circle bundle as θ, the Buscher rules give the

T-dual metric as

ds2M ′ = ds2B + e−2φ(b)(dθ + A′)2 , (2.1)
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where the (locally defined) one-form A′ = Bθ. Thus, we have the (globally defined)

T-dual connection A′ = dθ+A′ = dθ+α which satisfies e(M ′) = dA′ = λ as expected.

We also have that

B′
‖ = β , B′

θ̄ = A , (2.2)

since B′
‖ = B‖ − Bθ∧A. This tells us that the local version of the T-dual B-field is

B′ = β + A∧dθ = B‖ + A∧A′ , (2.3)

and

H ′ = dB′ = dβ + dA∧dθ = dβ − e∧α + e∧A′ = e∧A′ − γ .

It is important here that the T-duality transformation rules act on the B-field and not

just on its flux. Even though we have worked locally, trivializing both H and the circle

bundle M , it is possible to define this transformation in an invariant manner using

differential cohomology [18]. To summarize, the T-dual NSNS-fields are

A′ = Bθ ,

φ′ = −φ ,

B′ = B‖ + A∧A′ .

(2.4)

In order to define a T-duality transformation on the RR-fields, we form the fiber

product M ×B M ′ which is defined to be the set of all (m,m′) ∈ M ×M ′ such that m

and m′ project to the same point in B. This is a torus bundle over the base, B. Let C

be the differential form representing the sum of all the RR-potentials. By assumption,

it has no θ dependence. The T-duality formulae for RR-potentials given in [10] are

equivalent to

C ′ = π2∗

(
π∗
1C∧eA

′∧A
)

, (2.5)

where π1 and π2 are the projections from M ×B M ′ to M and M ′ respectively. This

expression appears in [15], building on the work in [9]. We can derive the usual form

of the Buscher rules as follows. First, we locally write the RR-potential C as

C = C‖ + Cθ∧dθ .

In the expression (2.5), the pushforward π2∗ represents an integral over the variable, θ,

and thus we can write things as follows

C ′ =

∫

θ

[
C(1 + (dθ + α)(dθ + A))

]
= Cθ + C‖(dθ + α)− CθA(dθ + α) ,

or

C ′
θ
= C‖ − Cθ∧A , C ′

‖ = Cθ + C‖∧A
′ + Cθ∧A

′∧A . (2.6)
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These are precisely the same rules as given in [10]. It is straightforward to verify that

this transformation squares to the identity.

Next, we wish to add a D-brane to this setup. We will choose it so that it wraps

the fiber of M . Let X be a submanifold of B, and i : X → B be the embedding. We

define the D-brane XM = i∗(M) to be the restriction of the bundle M to X , and we

have the embedding iM : XM → M . Thus, we have the following diagram of spaces:

X B

XM M M ′

M ×B M ′

..
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
.....
..
....
....

..
.
.
.
.
.
.
.
.
.
.

.........................................................................................................
...

.....
..
..
.
..

iM
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
...
..
.....
..
....
....

..
.
.
.
.
.
.
.
.
.
.

ρ1

..............................................................................................................
..
.

.....
..
..
.
..

i

..
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
....
..
.
.
.
.
.
.
.
.

..
..
....
....

π1

..

...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
....
..
....
....

..
..
.
.
.
.
.
.
.
.

π2

...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
...
..
.....
.
.
.
.
.
.
.
.
.
.

..

..
....
....

ρ2

.

The picture to keep in mind here is that the D-brane XM is a submanifold of

M wrapping both X and the fiber of M over X . It must obey the Freed-Witten

anomaly equation, i∗M(H) = dB. Let α = π1∗B. Then dα = π1∗dB = i∗λ. Now let

β = B + i∗MA∧α. This only has components along the base, and dβ = i∗e∧α − i∗γ.

These are exactly the pullbacks of the local form for B given above, but since we

restricting to the worldvolume of the brane, the Freed-Witten condition means that α

and β are now globally defined.

The T-dual brane does not wrap the fiber of M ′, and thus it represents a section of

the bundle M ′ → B restricted to the submanifold X . More precisely, this means that

there exists a section of the bundle i∗(M ′) which we write as a map s : X → i∗(M ′).

This trivializes i∗(M ′) which means that i∗(e(M ′)) = i∗λ must be exact. This is

indeed true as from above we have that i∗λ = dα. Next, let η be the embedding of

i∗(M ′) → M ′. Then there is a map iM ′ = η◦s : X → M ′ which is the embedding of the

T-dual D-brane. We choose the section, s, such that the wrapping number over any

nontrivial loop in the base is zero. This is dual to there being no gauge flux in the fiber

direction on the brane XM .4 Thus, we can choose coordinates such that the section, s,

is at constant θ and, hence, i∗M ′(A′) = α. To see the Freed-Witten condition, note that

i∗M ′(H ′) = i∗M ′(e)∧α − i∗M ′γ = i∗e∧α − i∗γ = dβ, which means that the B-field on the

brane is given by B′ = β. This is precisely the pullback of the local expression (2.3) to

the brane worldvolume as expected.

4One way to see this is that a wrapping of the brane around the coordinate θ can be replaced by

the addition of a cohomologically non-trivial one-form to the metric, i.e., (dθ+A′)2 → (dθ+A′+κ)2.

Under T-duality, this comes from adding κ to Bµθ which can be exchanged for a gauge field under the

B ↔ F gauge transformation. This gauge invariance means that we should really never talk about B

alone. See the next section for more details.
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Let us summarize the results of this section. Our original spacetime is denoted by

M and our T-dual spacetime is given by M ′. Each is a circle bundle over a base, B,

with connections A and A′, respectively. The Euler classes are given by

e(M) = dA = e and e(M ′) = dA′ = λ ,

and the H-fluxes are given by

H = A∧λ− γ and H ′ = e∧A′ − γ .

We have a brane XM embedded into M which wraps the fiber of M and a T-dual brane

given by X embedded into M ′. Their components along the base, B, are given by the

same embedding of X into B. The B-fields on the worldvolumes of the branes are given

by

B = β −A∧α and B′ = β .

These satisfy dB = H and dB′ = H ′ where we restrict H and H ′ to the worldvolumes

of the branes. This gives relations between α, β, e and λ.

3. Gauge invariance

In the previous section, we set F = 0 on the brane. This is not a gauge invariant

statement, however, as there exists a symmetry

F → F + Λ , B → B − Λ , (3.1)

with dΛ = 0. In particular, in the brane coupling, we replace B by the gauge invariant

quantity B + F . For example, (1.2) is replaced by

∫

X

√
Â(TX)

Â(NX)
eB+FC ,

and similarly for the other forms of the coupling discussed later. In this section, we will

see how this symmetry is implemented in the context of T-duality. We will only consider

Abelian gauge fields as non-Abelian degrees of freedom necessitate the inclusion of

Myers terms [10].

To begin with, let us examine the effects of the addition of a gauge flux, F . We can

decompose F = F‖ + Fθdθ. The rules for T-duality give that the T-dual field strength

is

F ′ = F‖ . (3.2)
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The effect of Fθ, then, is that it changes the position of the T-dual D-brane. In

particular, recall that the position of the dual brane is given by the value of the Wilson

loop around the circle

exp

(
2πi

∫
dθAθ

)
.

Thus, if Fθ = df for some R valued function, f(b) on B, then Aθ = f , and we have that

the dual position of the brane is given by f mod 1 (where we have set the circumference

of the dual circle to be 1).

To address the situation where Fθ is not exact, recall that the relation Fθ = df is

equivalent to Fθ = f ∗(dφ) where φ is a coordinate on S1. In fact, we can write any

closed one form as the pullback of dφ for some function f : B → S1 ∼= R/Z. This

function provides the position of the T-dual brane. More precisely, recall from the

previous section that we have an embedding iM ′ : X → M ′. This map trivializes the

circle bundle M ′ when restricted to X . Thus, we can think of iM ′ as a map from X

into X × S1 given by iM(x) = (x, 0) where, as above, we parametrize S1 by R/Z. This

is the location of the T-dual D-brane when there is no Fθ flux. The addition of a flux

Fθ = f ∗(dφ) lets us define a new function

ifM(x) = (x, f) ,

which is the embedding of the T-dual D-brane. This D-brane has a flux on it given by

F ′ = F‖.

We can now understand the gauge invariance (3.1). We make the decomposition

Λ = Λ‖ + Λθdθ. We begin with the case Λθ = 0. This leaves Bθ and Fθ unchanged,

while B‖ and F‖ are shifted by Λ‖. From (2.2) and (3.2), we have that

(B′ + F ′)‖ = (B + F )‖ .

Thus, the coupling is invariant under this transformation.

Now let us consider the case where Λ = Λθdθ. As above, since dΛθ = 0, we can

define a function fΛθ
: B → S1 satisfying

f ∗
Λθ
(dφ) = Λθ .

Since we have shifted F → F +Λθdθ, the above discussions tells us that the embedding

of the T-dual brane is shifted to i
f+fΛ

θ

M ′ (x) = (x, f + fΛθ
). As we also have shifted

B → B − Λdθ, from (2.4), as A′ = Bθ we have that A′ is shifted as

A′ → A′ − Λθ .
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This means that the new T-dual metric is

ds2 = ds2B + e−2φ(dθ + A′ − Λθ)
2 .

Since the original transformation of F and B was a gauge invariance, we should be able

to recover the original T-dual brane and metric via a gauge invariance on the T-dual

side. To do so, we make the following coordinate transformation

σ = θ − fΛθ
.

This changes the metric to

ds2 = ds2B + e−2φ(dσ + A′)2 .

In these new coordinates, the brane embedding is given by if+fΛ
M ′ (x) = (x, f+fΛθ

−fΛθ
) =

(x, f). But these are precisely the original T-dual metric and brane embedding. Thus,

we see that the gauge invariance (3.1) is mapped under T-duality to a coordinate

transformation, and everything is invariant.

The careful reader will have noticed, however, that the transformation rule for F

here is not well-defined because the form F‖ +Fθdθ depends on a local trivialization of

XM over X . To make this dependence precise, let s be a local section of XM over some

open set, U ⊂ X . Then we define F s
‖ = s∗F and F s

θ = ρ1∗(F ). In a new trivialization

t, we can similarly define F t
‖ and F t

θ . The difference s − t defines a map from U to

U(1), and, as above, a one-form ν = (s− t)∗(dφ). Then we have F t
‖ − F s

‖ = F s
θ∧ν and

F t
θ = F s

θ . Since F ′ = F‖, we have that ∆F ′ = (F s)′ − (F t)′ = Fθ∧ν. Thus, it appears

that the change in trivialization has led us to a different T-dual gauge flux. However,

recall the definition of the T-dual B-field (2.3)

B′ = β + A∧dθ .

Not only is this expression only defined locally on XM , the fact that it involves A means

that it also depends on an explicit trivialization s : X → XM such that As = s∗(A). In

the trivialization t, we have At = As+ν. Thus, the T-dual B-field shifts by ∆B′ = ν∧dθ.

It follows from the above discussion that i∗M ′(dθ) = Fθ, and i∗M ′(∆B′) = ν∧Fθ. Thus,

we see that the change in trivialization is precisely a gauge transformation of the form

(3.1) on the T-dual side. In fact, this is very much the same as the above situation

where the choice of a trivialization masqueraded as a coordinate transformation.

The moral of this story is that the traditional concept of a ‘gauge field’ on the

D-brane is not an invariant notion even in when the H-flux is trivial.5 One should only

5Formally, the B-field is an element in the differential cohomology group Ȟ3(M). The Freed-Witten

anomaly cancellation condition states that the pullback of this element to the brane is trivial. The

correct notion of an Abelian ‘gauge field’ on the brane is as an explicit trivialization of this class.
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speak of gauge invariant quantities, and F is not gauge invariant. Of course, neither is

B, but to save space, for the rest of the paper we will write B even though we mean

the gauge invariant quantity B + F .

4. Self-duality

Self-duality imposes a significant constraint on the RR-field strengths. In this section,

we will show that the Buscher rules preserve this constraint.6 Away from the sources,

one can define this field strength as F = dC + H∧C. It is straightforward to verify

that the Buscher rules give

F ′ = π2∗

(
π∗
1(F )eA

′∧A
)

. (4.1)

Now, let us consider the self-duality constraint in the form presented in [19]. In

Lorentzian signature, one first defines the total RR-flux

IIA : F = F0 + F2 + F4 + ⋆F4 − ⋆F2 + ⋆F0 ,

IIB : F = F1 + F3 + F5 + ⋆F3 − ⋆F1 ,

with ⋆F5 = −F5 in IIB. These fluxes obey the self-duality relation

F = (−)
10+κ−d

2 ⋆F ,

where d is the degree of the form and κ = d mod 2. Thus, κ = 0, 1 for IIA and IIB

respectively. In what follows, whenever d occurs in an expression such as the above, it is

the degree of the form following the sign, extended by linearity to act on arbitrary forms.

For example, given a p form ωp and a q form ωq, (−)d(ωp + ωq) = (−1)pωp + (−1)qωq.

We want to write a formula for the Hodge star on an arbitrary circle bundle M

with the metric

ds2M = ds2B + e2φ(dθ + A)2 .

We choose an orthonormal frame of one-forms ea on B and add eϑ = eφ(dθ+A) = eφA

to complete the frame on M . Note that, despite the regrettable collision of notation,

eφ here is a function on B and not a one-form. Recall that the Hodge star is defined to

satisfy ∫

M

√
|det(g)|αµ1...µn

βµ1...µn =

∫

M

α∧⋆β . (4.2)

6One might expect that this restricts the form of the possible corrections to the Buscher rules.

However, one should be very careful when discussing the quantization of a self-dual field. For a

discussion of the relevant subtleties, see [19].
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If we write

α = α≀ + αθ∧e
φA ,

we have that, in orthonormal components,

αa1...an = α≀ and αa1...an−1ϑ = αθ .

Thus, choosing a mostly plus signature,
∫

M

√
|det(g)|αµ1...µn

βµ1...µn = 2π

∫

B

eφ ((α≀ · β≀) + (αθ · βθ))

= 2π

∫

B

eφ (α≀∧⋆Bβ≀ + αθ∧⋆Bβθ) ,

(4.3)

where

(α≀ · β≀) =
√

|det(gB)|α≀µ1...µn
βµ1...µn

≀ ,

and similarly for (αθ · βθ).

The right side of (4.2) can be written

∫

M

α∧⋆β =

∫

M

(α≀ + αθ∧e
φA)∧((⋆β)≀ + (⋆β)θ∧e

φA)

=

∫

M

eφ
(
α≀∧(⋆β)θ + αθ∧(−)d(⋆β)≀

)
∧A

= 2π

∫

B

eφ
(
α≀∧(⋆β)θ + αθ∧(−)d(⋆β)≀

)
.

(4.4)

Comparing (4.3) and (4.4), we obtain

⋆β = (⋆β)≀ + (⋆β)θ∧e
φA = (−)d⋆Bβθ + ⋆Bβ≀∧e

φA .

Returning to the case where M is Lorentzian and ten dimensional, the self-duality

constraint on F = F≀ + Fθ∧eφA is that

F≀ = (−)
2+κ+d

2 ⋆BFθ , (4.5)

and, equivalently,

Fθ = (−)
1+κ−d

2 ⋆BF≀ . (4.6)

The T-dual of F is

F ′ = π2∗

(
(F≀ + Fθ∧e

φA)∧(1 +A′∧A)
)

= F≀∧A
′ + eφFθ

= eφ(Fθ + F≀∧e
−φA′) .

(4.7)
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Hence

F ′
≀ = eφFθ and F ′

θ = eφF≀ . (4.8)

To verify self-duality, we compute

F ′
≀ = eφFθ = (−)

1+κ−d

2 eφ ⋆BF≀ = (−)
1+κ−d

2 ⋆BF
′
θ = (−)−(κ′+d)(−)

2+κ
′+d

2 ⋆BF
′
θ ,

where we have used that κ′ = 1 − κ. Since the degrees of ⋆BF
′
θ are the same as the

degrees of F ′, κ′ = d mod 2 and the first sign is 1. Thus, we recover the self-duality

constraint (4.5) for the T-dual field strength.

5. K-theory and RR-fields

In this section, we begin our discussion of the K-theoretic aspects of T-duality. First,

we will ‘derive’ the expression (1.2) for the brane coupling as follows.7 We will briefly

depart from the notation of section 2 and discuss a brane X embedded into a manifold

M by the map iM . Since we know that D-branes and RR-fields naturally live in twisted

differential K-theory, let us write iM∗(1) for the push-forward of the fundamental class

of X to M . This is possible in twisted K-theory because of the Freed-Witten condition.

The twist is provided by an element in differential H ∈ Ȟ3(M) [18], and we write the

twisted differential K-theory group as Ǩ•
H(M) . Physically, this is just the fact that we

have to keep track of the B-field and not just its flux. We will denote the class of the

RR-potential by C. From Moore and Witten [14], we have that the differential form

version of the RR-potential is

C =

√
Â(M)ch(C) , (5.1)

and

F = dHC
def
= dC +H∧C .

The coupling is given by the K-theoretic integral
∫

M

iM∗(1) · C . (5.2)

The integrand lives in the differential K-group Ǩ1(M), and the integral takes this

to Ǩ1(pt) ∼= R/Z which we can exponentiate and add to the action. The integral

in differential K-theory is related to the index of the Dirac operator and requires a

Riemannian structure on TM .

7A variant of this argument was, in fact, the original motivation for the relation of D-brane charges

to K-theory and appears in [20]. The derivation here is well-known.
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To write this in cohomology, we use the index theorem of [21] to obtain8

∫

M

Â(M)ch(iM∗(1))∧ch(C) . (5.3)

The Riemann-Roch theorem9 roughly gives that

ch(iM∗(1)) = iM∗

(
Â(N(X/M))−1eB

)
. (5.4)

In the untwisted case, the Riemannian structure on the normal bundle gives rise to

certain connections that determine the A-roof genus. Since we do have a twist, however,

we will leave the A-roof genus unspecified. The right side of (5.4) should be interpreted

as a current supported on X . Inserting this into the above expression and using the

projection formula, we obtain

∫

X

1

Â(N(X/M))
eB i∗M

(
C

√
Â(M)

)
. (5.5)

For a D7 brane, we can write this in terms of Pontryagin classes as follows (we set

B = 0 for convenience):

∫

D7

i∗M(C8) +
1

24

(
p1(N(X/M))−

1

2
i∗M(p1(TM))

)
∧i∗M (C4)

+
1

1440

(
p2(N(X/M))−

1

2
i∗M(p2(TM))

)
∧i∗M(C0)

+
1

640

(
1

3
p1(N(X/M))2 +

1

4
i∗M (p1(TM)2)

)
∧i∗M(C0) .

(5.6)

To write a Pontryagin class in terms of forms, we have to choose a connection on the

relevant bundle. If we denote its curvature as F , we have

p1(V ) = −
1

8π2
tr(F 2) , p2(V ) =

1

128π4

(
tr(F 2)2 − 2tr(F 4)

)
.

Because the pullback of TM to X decomposes as the direct sum TX ⊕N(X/M),

on the level of cohomology, the pullback of [Â(M)] factors as [Â(TX)]∪ [Â(N(X/M))].

8Like all the formulae in this paper involving the RR-potential, this formula is meant to be im-

pressionistic. It can be made sense of by unravelling the definition of the pushforward in differential

K-theory. However, we are neglecting, among other things, the self-duality constraint and the issue of

Spinc structures. See [16] and [21] for more details.
9To my knowledge, this remains unproven for twisted differential K-theory. For ordinary twisted

K-theory, the theorem is proven in [22]. As always, we are neglecting many issues here and making

little pretense towards rigor, leaving that for other work.
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If we take this to hold on the level of forms, we can turn (5.5) into the expression (1.2)

∫

X

√
Â(TX)

Â(NX)
eBC . (5.7)

However, since eBC is not closed, even though the two ratios of genera are cohomolo-

gous, it does not mean that (5.5) and (5.7) are equal. Since the difference between the

ratio of genera is an exact form, we can write it as dCS, and we have that

(5.5)− (5.7) =

∫

X

dCS eBC =

∫

X

CS eBdHC =

∫

X

CS eBF . (5.8)

We can, in principle, write down a version of the brane coupling for any representative

in the cohomology class of the ratio of Â-genera. The difference will always amount to

a choice of CS in (5.8). We should emphasize that there are two separate but related

issues here. The first is the form of the coupling in terms of the A-roof genera. This

is the difference between, say, (5.5) and (5.7). The second is the fact that we have

not specified how to form the relevant A-roof genera. Each of these issues leads to

a difference in the form of (5.8). For the first issue, K-theory suggests that the form

(5.5) is most natural, but it tells us less about the second issue. These choices may be

related to the ‘extra’ terms in the brane coupling found by Craps and Roose [23].

Because these objects live in K-theory we must extend in some way the Buscher

rules (2.5) . Returning to the setup of section 2, we can suggest the K-theoretic formula

C′ = π2∗(Θ(π∗
1C)) (5.9)

as an obvious refinement of (2.5). This formula appears for non-differential K-theory

in [15]. Here Θ is an isomorphism between ǨH(M ×BM
′) and ǨH′(M ×BM

′) given by

a canonical isomorphism of the pullbacks of the B-fields on M and M ′ as elements of

Ȟ3(M ×B M ′) [18]. This is related to the canonical trivialization H −H ′ = d(A′∧A).

To obtain an expression in terms of cohomology, we take Chern characters giving

C ′ =

√
Â(M ′)ch(C′) =

√
Â(M ′)ch(π2∗(Θ(π∗

1C)))

=

√
Â(M ′)π2∗

(
Â

(
T

(
M ×B M ′

M ′

))
π∗
1ch(C)e

A′∧A

)
(5.10)

= π2∗

(√
Â(M ′)

Â(M)
Â

(
T

(
M ×B M ′

M ′

))
eA

′∧Aπ∗
1C

)
.
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Here, we have used the index theorem in differential K-theory [21].10 This bundle is

canonically isomorphic to that of the projection from M to B, so we can write the

above expression as

C ′ = π2∗

(√
Â(M ′)

Â(M)
Â (T (M/B)) eA

′∧Aπ∗
1C

)
. (5.11)

Again, since we are concerned with particular representatives and not just cohomology

classes, we must still determine the A-roof genera to properly evaluate this expression.

For an arbitrary choice of the A-roof genera, this appears to be a correction to the

Buscher rules for T-duality. The significance of this will be discussed in the next

section.

6. The invariance of the couplings

To verify invariance of the brane couplings, we will first write them in the manner of

(5.5):
∫

XM

√
i∗M Â(M)

Â(N(XM/M))
eβeα∧Ai∗M (C) . (6.1)

Similarly, we can define C ′ and write the coupling for the brane X as

∫

X

√
i∗M ′Â(M ′)

Â(N(X/M ′))
eβi∗M ′(C ′) . (6.2)

As noted in the previous section, these expressions differ from the expression (1.2) given

in the introduction.

Because T-duality is its own inverse,11 to verify that the coupling is invariant, it

suffices to check only one direction. Thus, we will manipulate (6.2) so that it is equal

to (6.1). To begin with, we plug in the T-duality equation (5.11)

∫

X

√
i∗M ′Â(M ′)

Â(N(X/M ′))
eβ i∗M ′(C ′) =

∫

X

i∗M ′Â(M ′)

Â(N(X/M ′))
eβ i∗M ′π2∗


Â (T (M/B))√

Â(M)
eA

′∧Aπ∗
1C


 .

(6.3)

10As with the Riemann-Roch theorem, this theorem is for nontwisted differential K-theory, but we

are assuming it holds for the twisted case. The pushforward in ordinary (not differential) twisted

K-theory is given in [24]. Again, this formula is impressionistic and should be interpreted along the

lines of (5.3). However, it becomes precise when applied to field strengths.
11This is nontrivial to prove in the K-theory case, and we will not attempt to do so here.
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Before proceeding, it is worth describing the picture behind the following calcula-

tion. Recall that our brane XM wraps the fiber of M over X . The T-dual brane, on the

other hand, does not wrap the fiber of the T-dual spaceM ′. Now, our expression for the

T-dual RR-fields expresses them as an integral over the fiber of M ; that is the meaning

of the push-forward π2∗. On the other hand, the expression for the brane coupling on

the T-dual side involves the integral of the T-dual RR-fields over the worldvolume of

the brane, X . But since the T-dual RR-fields are given by integrals over the fiber of

M , the integral in the coupling can be expressed as an integral over XM just done in

two parts: first over the fiber to obtain the T-dual RR-field, and then over X to obtain

the coupling. However, XM is precisely the worldvolume of our original brane. Thus,

all that remains to do is to compare the explicit expressions over XM . In particular,

that is the content of the formula (6.4) below: it is a rewriting of the coupling for the

T-dual brane, (6.2), and we wish to compare it to the coupling (6.1). The factor eA
′∧A

corrects the B-field on the brane, and the two brane couplings agree provided me make

a number of compatibility assumptions about the A-roof genera.

To make this more precise, recall that M ×B M ′ is a circle bundle over M ′ which

we can pull back to X by iM ′ . The resulting space is

X ×M ′ (M ×B M ′) ∼= X ×B M = XM .

This can be seen intuitively by nothing that we are pulling back the fiber of M ×B M ′

to the base by the section of M ′ over X . This is precisely the fiber of M over the image

of X . Explicitly, the space on the left is the collection of triples (x,m,m′) such that

iM ′(x) = m′ and ρ1(m) = ρ2(m
′). Thus m′ is redundant, and we obtain the space on

the right. Note that the composition ρ2 ◦ iM ′ = ρ2 ◦ η ◦ s = i, so we really do obtain

XM . This then gives us a map from XM → M ×B M ′ which we denote τ . Explicitly,

this is given by τ(x,m) = (m, iM ′(x)).

Now, examine the push-pull combination i∗M ′π2∗ which appears above. It is equiv-

alent to the composition ρ1∗τ
∗. Here we have abused notation slightly and used ρ1 to

denote the projection of XM = X×B M to B. This map is the restriction of ρ1 to XM .

The equivalence of these two operations can be seen because i∗M ′π2∗ integrates along θ

and then restricts to the embedding of X in M ′ given by iM ′. On the other hand ρ1∗τ
∗

first restricts to XM and then integrates over θ, giving the same answer.

We can now write the coupling as

∫

X

i∗M ′Â(M ′)

Â(N(X/M ′))
eβ ρ1∗τ

∗


Â (T (M/B))√

Â(M)
π∗
1(C)eA

′∧A


 .
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We apply the projection formula along the fiber of XM giving

∫

XM

ρ∗1

(
i∗M ′Â(M ′)

Â(N(X/M ′))
eβ

)
τ ∗


Â (T (M/B))√

Â(M)
π∗
1(C)eA

′∧A


 . (6.4)

Notice that everything in the second set of parentheses is pulled back from M except

eA
′∧A. Since τ lifts iM ′ and i∗M ′(A′) = α, we have

∫

XM

i∗M


Â (T (M/B))√

Â(M)


 ρ∗1

(
i∗M ′Â(M ′)

Â(N(X/M ′))
eβ

)
C eα∧A .

On the level of cohomology, we have that

i∗M Â(M)

Â(N(XM/M))
= i∗M Â (T (M/B)) ρ∗1

(
i∗M ′Â(M ′)

Â(N(X/M ′))

)
. (6.5)

This can be easily seen, for example, from the following exact sequences:

0 −→ TX −→ i∗M ′TM ′ −→ N(X/M ′) −→ 0 ,

0 −→ TXM −→ i∗MTM −→ N(XM/M) −→ 0 , (6.6)

0 −→ i∗MT (M/B) −→ TXM −→ ρ∗1TX −→ 0 .

If we assume that (6.5) holds on the level of forms as opposed to just cohomology

classes, we have that the coupling of the T-dual RR-fields to the brane X can be

written as
∫

XM

√
i∗M Â(M)

Â(N(XM/M))
eβeα∧AC ,

which is exactly the coupling to the brane XM given by (6.1).

Of course, as we have emphasized, (6.5) will not be true on the level of forms

for arbitrary connections on the various bundles. One can ask if there exists a set of

connections on the five bundles above such that this relation holds. In fact, there does

as we can see from the following bundle isomorphims:

TM ∼= ρ∗1TB ⊕ T (M/B) , TM ′ ∼= ρ∗2TB ⊕ T (M ′/B) ,

N(X/M ′) ∼= N(X/B)⊕ i∗M ′T (M ′/B) , (6.7)

N(XM/M) ∼= ρ∗1N(X/B) .

The first two splittings are equivalent to the choice of a connection on the principal

circle bundles M and M ′. The T (M ′/B) subbundle of N(X/M ′) represents the U(1)
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action on M ′ acting on the brane, and the splitting of N(X/M ′) is induced from that

on TM ′. If we form the A-roof genera out of connections that respect these splittings,

then the relation (6.5) holds. Nonetheless, as we will discuss in a moment, this is

probably not how things are realized in physics.

While we are not claiming that the relations of the previous paragraph provide the

physically correct answer, it is worth spending a moment to explore their consequences.

In particular, these relations imply that the ‘correction’ to the Buscher rules in (5.11)

becomes
√

Â(M ′)

Â(M)
Â (T (M/B)) =

√
Â (T (M/B)) Â (T (M ′/B)) .

A Riemannian structure and orientation on a bundle reduces the structure group to

the special orthogonal group. If that respects the decompositions (6.7), the fact that

SO(1) is trivial means that the induced connection on a one dimensional component

is also trivial. In particular, this implies that the correction we originally postulated

in (5.11) is exactly equal to one. Thus, we are led to the conclusion that the Buscher

rules are uncorrected and that every connection which appears in the brane coupling

is pulled back from the base B.

While these connections exist mathematically (although they may not be induced

from the needed structures in the index theorems), they are unmotivated from the point

of view of the physics. D-brane couplings should apply in all backgrounds whether or

not there exists an Abelian symmetry, and, as such, the choice of the connection in the

A-roof genus should be universal. Their exact form remains, then, a puzzle. There are a

number of possible resolutions. The first is that the Buscher rules are, in fact, corrected.

However, as we have seen, the simple correction (5.11) is not sufficient to ensure the

invariance of the coupling; we need to further assume the relation (6.5). Still, it is

not too hard to add in correction terms by hand that render the full brane coupling

invariant for any choice of forms representing the ratio of A-roof genera. However,

any such correction (including that in (5.11)) almost inevitable spoils the self-duality

derived above. This may not be a problem because of the subtleties associated with a

self-dual field, but it is somewhat disturbing.

We can instead postulate that the Buscher rules are uncorrected (as we have seen

follows from one attempt to satisfy the relation (6.5)). Note that since the low-energy

effective action of type II string theories receives corrections only at O(α′3), it is natural

to assume that the Buscher rules will not be corrected to up to that order.12 If we

12That there are no corrections in the NSNS sector can further be seen by direct calculation [25].
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further assume that (5.11) is the correct expression, we have that

√
Â(M ′)

Â(M)
Â (T (M/B)) = 1 . (6.8)

A close examination will reveal that this is an extremely odd formula that seems dif-

ficult to satisfy unless all the relevant forms are pulled back from B. Nonetheless,

one might hope that there exist connections involving fields beyond the metric such

that the equations of motion imply that (6.5) and (6.8) hold. This would imply that

T-duality only holds on-shell. One might go even further and require supersymmetry

perhaps. Another possibility is that (5.11) is incorrect, and that the K-theoretic T-

duality expression (5.9) must be modified to keep the Buscher rules uncorrected. In

another direction, it is possible that the coupling (6.1) is simply incomplete, and there

exist further terms of a less topological character. One way to address these questions

might be to understand the local form of the anomaly and demand its cancellation [26].

One incomplete attempt in that direction is [27]. More generally, this can be resolved

by an explicit calculation of the string scattering amplitudes [28] extending the work

of [23, 29, 30].

We do not have a solution to this puzzle and will devote the remainder of the paper

to understanding how it relates to various properties one might expect T-duality to

have in a K-theoretic context. Before proceeding, however, we note that one important

consequence of (6.5) and (6.8) is that

√
i∗M Â(M)

Â(N(XM/M))
= ρ∗1




√
i∗M ′Â(M ′)

Â(N(X/M ′))


 . (6.9)

As mentioned in the introduction, this means that the ratio of A-roof genera in the

D-brane coupling is pulled back from B. This is important because it is not difficult

to show that if it is not true, then T-duality implies that the coupling must contain

additional terms which couple a D-brane to transverse RR-fields even for a single D-

brane (in contrast to the Myers terms which are inherently non-Abelian). We will see

in what follows that one can start with (6.9) and the assumption that the Buscher rules

are uncorrected and derive the invariance of the D-brane coupling.

7. The index pairing

The goal of this section is to show that, when evaluated on differential K-theory classes

invariant under the circle action, the index pairing is preserved by T-duality. In other
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words, given invariant elements H ∈ Ȟ3(M), C ∈ Ǩ•
−H(M), D ∈ Ǩ•

H(M) and their

primed T-duals, we want that ∫

M

C · D =

∫

M ′

C′ · D′ . (7.1)

For this calculation, we will assume that the Buscher rules are uncorrected (6.8), but

not that relation (6.5) holds. Following (5.1), let us define

CH(C)
def
=

√
Â(M)ch(C) , (7.2)

and similarly for any differential K-theory class. This expression is chosen so that the

pairing in cohomology is the same as the pairing in K-theory. In other words, we have∫

M

CH(C)∧CH(D) =

∫

M

Â(M)ch(C)ch(D) =

∫

M

C · D .

Now, given a form C, let us denote the Buscher T-dual by

T (C)
def
= π2∗

(
eA

′∧Aπ∗
1(D)

)
.

The assumption that the Buscher rules are uncorrected is equivalent to the statement

that

T (CH(C)) = CH(C′) , (7.3)

where C′ is some K-theoretic version of T-duality along the lines of (5.9).

We will show that ∫

M

C∧D =

∫

M ′

T (C)∧T (D) . (7.4)

Then (7.1) follows from (7.3) and (7.4) by
∫

M

C · D =

∫

M

CH(C)∧CH(D) =

∫

M ′

T (CH(C))∧T (CH(D)) =

∫

M ′

C′ · D′ .

Since the forms in (7.4) are invariant under the circle action, we can define

C = c1 + c2∧A , D = d1 + d2∧A ,

where c1, c2, d1 and d2 are all implicitly pulled back from B. Then, for the right hand

side of (7.4), we have:
∫

M ′

T (C)T (D) =

∫

M ′

π2∗

(
eA∧A′

π∗
1C
)
π2∗

(
eA

′∧Aπ∗
1C
)

=

∫

M×BM ′

eA∧A′

π∗
1C π∗

2π2∗

(
eA

′∧Aπ∗
1D
)

=

∫

M×BM ′

eA∧A′

π∗
1C π∗

2 (d2 + d1∧A
′)

=

∫

B

(c1d2 + (−1)d1c2d1) .
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On the other hand, the left hand side of (7.4) is given by
∫

M

(c1 + c2∧A)(d1 + d2∧A) =

∫

B

(c1d2 + (−1)d1c2d1) .

Thus, we see that they are equal, and we are done.

8. T-duality of branes

In section 2, we treated the T-dual D-brane in an ad hoc manner. Given that RR-fields

measure the charges of D-branes, however, one expects that the T-duality of branes

should follow from a geometric formula such as (2.5) or its K-theoretic generalization

(5.9). That is the goal of this section.

We saw in section 5 that the differential K-theory class of a D-brane is defined

by the K-theoretic pushforward iM∗(1). After taking (modified) Chern characters, we

obtain the differential form

ηXM

def
=

√
Â(M)iM∗

(
Â(N(XM/M))−1eB

)
.

Recall that the D-branes are twisted by −H . We will assume as in (7.3) that T-duality

and the modified Chern character commute. Thus, we have

η′XM

def
= T (ηXM

) = π2∗


eA∧A′

π∗
1iM∗




√
i∗M Â(M)

Â(N(XM/M))
eB






On the other hand, we have the T-dual brane as defined in section 2

ηX
def
=

√
Â(M ′)iM ′∗

(
Â(N(X/M ′))−1eB

′

)
.

We are now faced with the question: are η′XM
and ηX equal? Unfortunately, the

answer is no. How, then, do we reconcile this with T-duality? To motivate the answer,

recall that these are not differential forms but are instead currents. They are the

analogue of delta functions in the world of differential forms and are defined similarly

to distributions as elements in the dual vector space to some nice space of differential

forms.13 From the point of view of the physics, what this means is that all the questions

we want to answer involve the integrals of the form
∫

M ′

iM ′∗(σ) ω ,

13Even more, we should really view these as Chern characters of elements in currential K-theory.

Since we are choosing the modified Chern character, the pairing in K-theory is the same as that in

cohomology, however, and we can ignore this point.
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where σ is a form on X and ω a form on M ′. The definition of the current iM ′∗(σ) is

that this expression is equivalent to

∫

X

σ i∗M ′(ω) ,

which we can easily evaluate. If two currents agree on all possible ‘test forms’ ω, then

they are equal.

As stated above, it is easily verified that this is false for η′XM
and ηX , so the currents

are unequal. We can now understand the problem, however. T-duality only holds if

the RR-fields are invariant with respect to the circle action. In other words, we will

only be testing our currents against differential forms invariant under that action. Let

us choose such a form ω. Because of its invariance we can write it as ω = ω1 + ω2∧A′.

To begin with, for ηX we have

∫

M ′

ηX∧ω =

∫

X

√
i∗M ′Â(M ′)

Â(N(X/M ′)
eB

′

i∗M ′ω =

∫

X

√
i∗M ′Â(M ′)

Â(N(X/M ′)
eβ (i∗ω1 + i∗ω2∧α) . (8.1)

Here, we have used B′ = β from section 2.

For η′XM
, we evaluate

∫

M ′

η′XM
∧ω =

∫

M ′

π2∗


eA∧A′

π∗
1iM∗




√
i∗M Â(M)

Â(N(XM/M))
eB




ω

=

∫

M×BM ′

eA∧A′

π∗
1iM∗




√
i∗M Â(M)

Â(N(XM/M))
eB


 π∗

2 (ω)

=

∫

M

iM∗




√
i∗M Â(M)

Â(N(XM/M))
eB


 π1∗

(
eA∧A′

π∗
2 (ω)

)

=

∫

XM

√
i∗M Â(M)

Â(N(XM/M))
eBi∗Mπ1∗

(
eA∧A′

π∗
2 (ω)

)
.

(8.2)

We want to integrate over the fiber to obtain something on X . Ignoring, for the

moment, the terms involving the A-roof genus, we have

ρ1∗

(
eBi∗Mπ1∗

(
eA∧A′

π∗
2(ω)

))
= ρ1∗

(
eBi∗M (ω2 + ω1∧A)

)
= eβ (i∗ω1 + i∗ω2∧α) ,

making use of the definition B = β −A∧α from section 2.
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Comparing (8.1) and (8.2), we see that they are equal when

√
i∗M Â(M)

Â(N(XM/M))
= ρ∗1




√
i∗M ′Â(M ′)

Â(N(X/M ′))


 .

This is precisely equation (6.9) above.

In light of this result and that of the previous section, we can now rederive the

invariance of the coupling shown in section 6. Recall that the coupling can be expressed

as the K-theoretic integral (5.2)

∫

M

iM∗(1) · C .

As we have established that the T-dual of iM∗(1) is iM ′∗(1) when evaluated on invariant

classes, (7.1) implies that

∫

M

iM∗(1) · C =

∫

M ′

(iM∗(1))
′ · C′ =

∫

M ′

iM ′∗(1) · C
′ ,

which establishes that the coupling is invariant under T-duality. However, this proof

gives a somewhat different perspective than that in section 6 because rather than as-

suming (6.5), we have instead assumed that the Buscher rules are uncorrected (7.3) and

that the A-roof corrections in the coupling are pulled back from B (6.9). Understanding

the correct perspective will have to be the subject of future work.
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