5,578 research outputs found

    Stress versus temperature dependent activation energies in creep

    Get PDF
    The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt

    A Large k Asymptotics of Witten's Invariant of Seifert Manifolds

    Full text link
    We calculate a large kk asymptotic expansion of the exact surgery formula for Witten's SU(2)SU(2) invariant of Seifert manifolds. The contributions of all flat connections are identified. An agreement with the 1-loop formula is checked. A contribution of the irreducible connections appears to contain only a finite number of terms in the asymptotic series. A 2-loop correction to the contribution of the trivial connection is found to be proportional to Casson's invariant.Comment: 51 pages (Some changes are made to the Discussion section. A surgery formula for perturbative corrections to the contribution of the trivial connection is suggested.

    T-duality and Differential K-Theory

    Full text link
    We give a precise formulation of T-duality for Ramond-Ramond fields. This gives a canonical isomorphism between the "geometrically invariant" subgroups of the twisted differential K-theory of certain principal torus bundles. Our result combines topological T-duality with the Buscher rules found in physics.Comment: 23 pages, typos corrected, submitted to Comm.Math.Phy

    On Supermultiplet Twisting and Spin-Statistics

    Full text link
    Twisting of off-shell supermultiplets in models with 1+1-dimensional spacetime has been discovered in 1984, and was shown to be a generic feature of off-shell representations in worldline supersymmetry two decades later. It is shown herein that in all supersymmetric models with spacetime of four or more dimensions, this off-shell supermultiplet twisting, if non-trivial, necessarily maps regular (non-ghost) supermultiplets to ghost supermultiplets. This feature is shown to be ubiquitous in all fully off-shell supersymmetric models with (BV/BRST-treated) constraints.Comment: Extended version, including a new section on manifestly off-shell and supersymmetric BRST treatment of gauge symmetry; added reference

    Gravitational Instantons and Fluxes from M/F-theory on Calabi-Yau fourfolds

    Full text link
    We compactify four-dimensional N=1 gauged supergravity theories on a circle including fluxes for shift-symmetric scalars. Four-dimensional Taub-NUT gravitational instantons universally correct the three-dimensional superpotential in the absence of fluxes. In the presence of fluxes these Taub-NUT instanton contributions are no longer gauge-invariant. Invariance can be restored by gauge instantons on top of Taub-NUT instantons. We establish the embedding of this scenario into M-theory. Circle fluxes and gaugings arise from a restricted class of M-theory four-form fluxes on a resolved Calabi-Yau fourfold. The M5-brane on the base of the elliptic fourfold dualizes into the universal Taub-NUT instanton. In the presence of fluxes this M5-brane is anomalous. We argue that anomaly free contributions arise from involved M5-brane geometries dual to gauge-instantons on top of Taub-NUT instantons. Adding a four-dimensional superpotential to the gravitational instanton corrections leads to three-dimensional Anti-de Sitter vacua at stabilized compactification radius. We comment on the possibility to uplift these M-theory vacua, and to tunnel to four-dimensional F-theory vacua.Comment: 47 pages, 2 figure

    Non-Abelian Chern-Simons models with discrete gauge groups on a lattice

    Full text link
    We construct the local Hamiltonian description of the Chern-Simons theory with discrete non-Abelian gauge group on a lattice. We show that the theory is fully determined by the phase factors associated with gauge transformations and classify all possible non-equivalent phase factors. We also construct the gauge invariant electric field operators that move fluxons around and create/anihilate them. We compute the resulting braiding properties of the fluxons. We apply our general results to the simplest class of non-Abelian groups, dihedral groups D_n.Comment: 16 pages, 7 figure
    • …
    corecore