7,645 research outputs found
A Large k Asymptotics of Witten's Invariant of Seifert Manifolds
We calculate a large asymptotic expansion of the exact surgery formula
for Witten's invariant of Seifert manifolds. The contributions of all
flat connections are identified. An agreement with the 1-loop formula is
checked. A contribution of the irreducible connections appears to contain only
a finite number of terms in the asymptotic series. A 2-loop correction to the
contribution of the trivial connection is found to be proportional to Casson's
invariant.Comment: 51 pages (Some changes are made to the Discussion section. A surgery
formula for perturbative corrections to the contribution of the trivial
connection is suggested.
T-duality and Differential K-Theory
We give a precise formulation of T-duality for Ramond-Ramond fields. This
gives a canonical isomorphism between the "geometrically invariant" subgroups
of the twisted differential K-theory of certain principal torus bundles. Our
result combines topological T-duality with the Buscher rules found in physics.Comment: 23 pages, typos corrected, submitted to Comm.Math.Phy
On Supermultiplet Twisting and Spin-Statistics
Twisting of off-shell supermultiplets in models with 1+1-dimensional
spacetime has been discovered in 1984, and was shown to be a generic feature of
off-shell representations in worldline supersymmetry two decades later. It is
shown herein that in all supersymmetric models with spacetime of four or more
dimensions, this off-shell supermultiplet twisting, if non-trivial, necessarily
maps regular (non-ghost) supermultiplets to ghost supermultiplets. This feature
is shown to be ubiquitous in all fully off-shell supersymmetric models with
(BV/BRST-treated) constraints.Comment: Extended version, including a new section on manifestly off-shell and
supersymmetric BRST treatment of gauge symmetry; added reference
Stress versus temperature dependent activation energies in creep
The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt
Non-Abelian Chern-Simons models with discrete gauge groups on a lattice
We construct the local Hamiltonian description of the Chern-Simons theory
with discrete non-Abelian gauge group on a lattice. We show that the theory is
fully determined by the phase factors associated with gauge transformations and
classify all possible non-equivalent phase factors. We also construct the gauge
invariant electric field operators that move fluxons around and
create/anihilate them. We compute the resulting braiding properties of the
fluxons. We apply our general results to the simplest class of non-Abelian
groups, dihedral groups D_n.Comment: 16 pages, 7 figure
On the Quantum Invariant for the Brieskorn Homology Spheres
We study an exact asymptotic behavior of the Witten-Reshetikhin-Turaev
invariant for the Brieskorn homology spheres by use of
properties of the modular form following a method proposed by Lawrence and
Zagier. Key observation is that the invariant coincides with a limiting value
of the Eichler integral of the modular form with weight 3/2. We show that the
Casson invariant is related to the number of the Eichler integrals which do not
vanish in a limit . Correspondingly there is a
one-to-one correspondence between the non-vanishing Eichler integrals and the
irreducible representation of the fundamental group, and the Chern-Simons
invariant is given from the Eichler integral in this limit. It is also shown
that the Ohtsuki invariant follows from a nearly modular property of the
Eichler integral, and we give an explicit form in terms of the L-function.Comment: 26 pages, 2 figure
On Dijkgraaf-Witten Type Invariants
We explicitly construct a series of lattice models based upon the gauge group
which have the property of subdivision invariance, when the coupling
parameter is quantized and the field configurations are restricted to satisfy a
type of mod- flatness condition. The simplest model of this type yields the
Dijkgraaf-Witten invariant of a -manifold and is based upon a single link,
or -simplex, field. Depending upon the manifold's dimension, other models
may have more than one species of field variable, and these may be based on
higher dimensional simplices.Comment: 18 page
- …
