5,121 research outputs found

    Dynamics of Diblock Copolymers in Dilute Solutions

    Get PDF
    We consider the dynamics of freely translating and rotating diblock (A-B), Gaussian copolymers, in dilute solutions. Using the multiple scattering technique, we have computed the diffusion and the friction coefficients D_AB and Zeta_AB, and the change Eta_AB in the viscosity of the solution as functions of x = N_A/N and t = l_B/l_A, where N_A, N are the number of segments of the A block and of the whole copolymer, respectively, and l_A, l_B are the Kuhn lengths of the A and B blocks. Specific regimes that maximize the efficiency of separation of copolymers with distinct "t" values, have been identified.Comment: 20 pages Revtex, 7 eps figures, needs epsf.tex and amssymb.sty, submitted to Macromolecule

    On the Construction and the Structure of Off-Shell Supermultiplet Quotients

    Full text link
    Recent efforts to classify representations of supersymmetry with no central charge have focused on supermultiplets that are aptly depicted by Adinkras, wherein every supersymmetry generator transforms each component field into precisely one other component field or its derivative. Herein, we study gauge-quotients of direct sums of Adinkras by a supersymmetric image of another Adinkra and thus solve a puzzle from Ref.[2]: The so-defined supermultiplets do not produce Adinkras but more general types of supermultiplets, each depicted as a connected network of Adinkras. Iterating this gauge-quotient construction then yields an indefinite sequence of ever larger supermultiplets, reminiscent of Weyl's construction that is known to produce all finite-dimensional unitary representations in Lie algebras.Comment: 20 pages, revised to clarify the problem addressed and solve

    On Supermultiplet Twisting and Spin-Statistics

    Full text link
    Twisting of off-shell supermultiplets in models with 1+1-dimensional spacetime has been discovered in 1984, and was shown to be a generic feature of off-shell representations in worldline supersymmetry two decades later. It is shown herein that in all supersymmetric models with spacetime of four or more dimensions, this off-shell supermultiplet twisting, if non-trivial, necessarily maps regular (non-ghost) supermultiplets to ghost supermultiplets. This feature is shown to be ubiquitous in all fully off-shell supersymmetric models with (BV/BRST-treated) constraints.Comment: Extended version, including a new section on manifestly off-shell and supersymmetric BRST treatment of gauge symmetry; added reference

    Surface Polymer Network Model and Effective Membrane Curvature Elasticity

    Full text link
    A microscopic model of a surface polymer network - membrane system is introduced, with contact polymer surface interactions that can be either repulsive or attractive and sliplinks of functionality four randomly distributed over the supporting membrane surface anchoring the polymers to it. For the supporting surface perturbed from a planar configuration and a small relative number of surface sliplinks, we investigate an expansion of the free energy in terms of the local curvatures of the surface and the surface density of sliplinks, obtained through the application of the Balian - Bloch - Duplantier multiple surface scattering method. As a result, the dependence of the curvature elastic modulus, the Gaussian modulus as well as of the spontaneous curvature of the "dressed" membrane, ~{\sl i.e.} polymer network plus membrane matrix, is obtained on the mean polymer bulk end to end separation and the surface density of sliplinks.Comment: 15 pages with one included compressed uuencoded figure

    Plasticization and antiplasticization of polymer melts diluted by low molar mass species

    Full text link
    An analysis of glass formation for polymer melts that are diluted by structured molecular additives is derived by using the generalized entropy theory, which involves a combination of the Adam-Gibbs model and the direct computation of the configurational entropy based on a lattice model of polymer melts that includes monomer structural effects. Antiplasticization is accompanied by a "toughening" of the glass mixture relative to the pure polymer, and this effect is found to occur when the diluents are small species with strongly attractive interactions with the polymer matrix. Plasticization leads to a decreased glass transition temperature T_g and a "softening" of the fragile host polymer in the glass state. Plasticization is prompted by small additives with weakly attractive interactions with the polymer matrix. The shifts in T_g of polystyrene diluted by fully flexible short oligomers are evaluated from the computations, along with the relative changes in the isothermal compressibility at T_g to characterize the extent to which the additives act as antiplasticizers or plasticizers. The theory predicts that a decreased fragility can accompany both antiplasticization and plasticization of the glass by molecular additives. The general reduction in the T_g and fragility of polymers by these molecular additives is rationalized by analyzing the influence of the diluent's properties (cohesive energy, chain length, and stiffness) on glass formation in diluted polymer melts. The description of glass formation at fixed temperature that is induced upon change the fluid composition directly implies the Angell equation for the structural relaxation time as function of the polymer concentration, and the computed "zero mobility concentration" scales linearly with the inverse polymerization index N.Comment: 12 pages, 15 figure

    Super-Poincare' algebras, space-times and supergravities (I)

    Full text link
    A new formulation of theories of supergravity as theories satisfying a generalized Principle of General Covariance is given. It is a generalization of the superspace formulation of simple 4D-supergravity of Wess and Zumino and it is designed to obtain geometric descriptions for the supergravities that correspond to the super Poincare' algebras of Alekseevsky and Cortes' classification.Comment: 29 pages, v2: minor improvements at the end of Section 5.

    Supersymmetric Distributions, Hilbert Spaces of Supersymmetric Functions and Quantum Fields

    Full text link
    The recently investigated Hilbert-Krein and other positivity structures of the superspace are considered in the framework of superdistributions. These tools are applied to problems raised by the rigorous supersymmetric quantum field theory.Comment: 24 page

    Field theoretic approach to the counting problem of Hamiltonian cycles of graphs

    Full text link
    A Hamiltonian cycle of a graph is a closed path that visits each site once and only once. I study a field theoretic representation for the number of Hamiltonian cycles for arbitrary graphs. By integrating out quadratic fluctuations around the saddle point, one obtains an estimate for the number which reflects characteristics of graphs well. The accuracy of the estimate is verified by applying it to 2d square lattices with various boundary conditions. This is the first example of extracting meaningful information from the quadratic approximation to the field theory representation.Comment: 5 pages, 3 figures, uses epsf.sty. Estimates for the site entropy and the gamma exponent indicated explicitl

    On the number of contacts of a floating polymer chain cross-linked with a surface adsorbed chain on fractal structures

    Full text link
    We study the interaction problem of a linear polymer chain, floating in fractal containers that belong to the three-dimensional Sierpinski gasket (3D SG) family of fractals, with a surface-adsorbed linear polymer chain. Each member of the 3D SG fractal family has a fractal impenetrable 2D adsorbing surface, which appears to be 2D SG fractal. The two-polymer system is modelled by two mutually crossing self-avoiding walks. By applying the Monte Carlo Renormalization Group (MCRG) method, we calculate the critical exponents ϕ\phi, associated with the number of contacts of the 3D SG floating polymer chain, and the 2D SG adsorbed polymer chain, for a sequence of SG fractals with 2b402\le b\le 40. Besides, we propose the codimension additivity (CA) argument formula for ϕ\phi, and compare its predictions with our reliable set of the MCRG data. We find that ϕ\phi monotonically decreases with increasing bb, that is, with increase of the container fractal dimension. Finally, we discuss the relations between different contact exponents, and analyze their possible behaviour in the fractal-to-Euclidean crossover region bb\to\infty.Comment: 15 pages, 3 figure

    Tunneling and Quantum Noise in 1-D Luttinger Liquids

    Full text link
    We study non-equilibrium noise in the transmission current through barriers in 1-D Luttinger liquids and in the tunneling current between edges of fractional quantum Hall liquids. The distribution of tunneling events through narrow barriers can be described by a Coulomb gas lying in the time axis along a Keldysh (or non-equilibrium) contour. The charges tend to reorganize as a dipole gas, which we use to describe the tunneling statistics. Intra-dipole correlations contribute to the high-frequency ``Josephson'' noise, which has an algebraic singularity at ω=eV/\omega=e^*V/\hbar, whereas inter-dipole correlations are responsible for the low-frequency noise. Inter-dipole interactions give a 1/t21/t^2 correlation between the tunneling events that results in a ω|\omega| singularity in the noise spectrum. We present a diagrammatic technique to calculate the correlations in perturbation theory, and show that contributions from terms of order higher than the dipole-dipole interaction should only affect the strength of the ω|\omega| singularity, but its form should remain ω\sim |\omega| to all orders in perturbation theory.Comment: RevTex, 9 figures available upon request, cond-mat/yymmnn
    corecore