97 research outputs found

    MASCARA-2 b: A hot Jupiter transiting the mV=7.6m_V=7.6 A-star HD185603

    Get PDF
    In this paper we present MASCARA-2 b, a hot Jupiter transiting the mV=7.6m_V=7.6 A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million flux measurements of the star, corresponding to a total of almost 3000 hours of observations, revealing a periodic dimming in the flux with a depth of 1.3%1.3\%. Photometric follow-up observations were performed with the NITES and IAC80 telescopes and spectroscopic measurements were obtained with the Hertzsprung SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of 3.4741190.000006+0.000005 days3.474119^{+0.000005}_{-0.000006}~\rm{days} at a distance of 0.057±0.006 AU0.057 \pm 0.006~\rm{AU}, has a radius of 1.83±0.07 RJ1.83 \pm 0.07~\rm{R}_{\rm{J}} and place a 99%99\% upper limit on the mass of <17 MJ< 17~\rm{M}_{\rm{J}}. HD 185603 is a rapidly rotating early-type star with an effective temperature of 8980130+90 K8980^{+90}_{-130}~\rm{K} and a mass and radius of 1.890.05+0.06 M1.89^{+0.06}_{-0.05}~M_\odot, 1.60±0.06 R1.60 \pm 0.06~R_\odot, respectively. Contrary to most other hot Jupiters transiting early-type stars, the projected planet orbital axis and stellar spin axis are found to be aligned with λ=0.6±4\lambda=0.6 \pm 4^\circ. The brightness of the host star and the high equilibrium temperature, 2260±50 K2260 \pm 50~\rm{K}, of MASCARA-2 b make it a suitable target for atmospheric studies from the ground and space. Of particular interest is the detection of TiO, which has recently been detected in the similarly hot planets WASP-33 b and WASP-19 b.Comment: 8 pages, 4 figures, Accepted for publication in A&

    Oscillations in the Sun with SONG: Setting the scale for asteroseismic investigations

    Full text link
    Context. We present the first high-cadence multi-wavelength radial-velocity observations of the Sun-as-a-star, carried out during 57 consecutive days using the stellar \'echelle spectrograph at the Hertzsprung SONG Telescope operating at the Teide Observatory. Aims. The aim was to produce a high-quality data set and reference values for the global helioseismic parameters {\nu_{max}}, and {\Delta \nu} of the solar p-modes using the SONG instrument. The obtained data set or the inferred values should then be used when the scaling relations are applied to other stars showing solar-like oscillations which are observed with SONG or similar instruments. Methods. We used different approaches to analyse the power spectrum of the time series to determine {\nu_{max}}; simple Gaussian fitting and heavy smoothing of the power spectrum. {\Delta\nu} was determined using the method of autocorrelation of the power spectrum. The amplitude per radial mode was determined using the method described in Kjeldsen et al. (2008). Results. We found the following values for the solar oscillations using the SONG spectrograph: {\nu_{max}} = 3141 {\pm} 12 {\mu}Hz, {\Delta\nu} = 134.98 {\pm} 0.04 {\mu}Hz and an average amplitude of the strongest radial modes of 16.6 {\pm} 0.4 cm/s. These values are consistent with previous measurements with other techniques.Comment: 5 pages, 5 figures, letter accepted for A&

    The mass and age of the first SONG target: the red giant 46 LMi

    Get PDF
    Context. The Stellar Observation Network Group (SONG) is an initiative to build a worldwide network of 1m telescopes with high-precision radial-velocity spectrographs. Here we analyse the first radial-velocity time series of a red-giant star measured by the SONG telescope at Tenerife. The asteroseismic results demonstrate a major increase in the achievable precision of the parameters for red-giant stars obtainable from ground-based observations. Reliable tests of the validity of these results are needed, however, before the accuracy of the parameters can be trusted. Aims. We analyse the first SONG time series for the star 46 LMi, which has a precise parallax and an angular diameter measured from interferometry, and therefore a good determination of the stellar radius. We use asteroseismic scaling relations to obtain an accurate mass, and modelling to determine the age. Methods. A 55-day time series of high-resolution, high S/N spectra were obtained with the first SONG telescope. We derive the asteroseismic parameters by analysing the power spectrum. To give a best guess on the large separation of modes in the power spectrum, we have applied a new method which uses the scaling of Kepler red-giant stars to 46 LMi. Results. Several methods have been applied: classical estimates, seismic methods using the observed time series, and model calculations to derive the fundamental parameters of 46 LMi. Parameters determined using the different methods are consistent within the uncertainties. We find the following values for the mass M (scaling), radius R (classical), age (modelling), and surface gravity (combining mass and radius): M = 1.09 ± 0.04 M⊙, R = 7.95 ± 0.11 R⊙ age t = 8.2 ± 1.9 Gy, and log g = 2.674 ± 0.013. Conclusions. The exciting possibilities for ground-based asteroseismology of solar-like oscillations with a fully robotic network have been illustrated with the results obtained from just a single site of the SONG network. The window function is still a severe problem which will be solved when there are more nodes in the network

    Precise radial velocities of giant stars XIII. A second Jupiter orbiting in 4:3 resonance in the 7 CMa system

    Full text link
    We report the discovery of a second planet orbiting the K giant star 7 CMa based on 166 high-precision radial velocities obtained with Lick, HARPS, UCLES and SONG. The periodogram analysis reveals two periodic signals of approximately 745 and 980 d, associated to planetary companions. A double-Keplerian orbital fit of the data reveals two Jupiter-like planets with minimum masses mbsini1.9MJm_b\sin i \sim 1.9 \,\mathrm{M_{J}} and mcsini0.9MJm_c\sin i \sim 0.9 \,\mathrm{M_{J}}, orbiting at semi-major axes of ab1.75aua_b \sim 1.75\,\mathrm{au} and ac2.15aua_c \sim 2.15\,\mathrm{au}, respectively. Given the small orbital separation and the large minimum masses of the planets close encounters may occur within the time baseline of the observations, thus, a more accurate N-body dynamical modeling of the available data is performed. The dynamical best-fit solution leads to collision of the planets and we explore the long-term stable configuration of the system in a Bayesian framework, confirming that 13% of the posterior samples are stable for at least 10 Myr. The result from the stability analysis indicates that the two-planets are trapped in a low-eccentricity 4:3 mean-motion resonance. This is only the third discovered system to be inside a 4:3 resonance, making it very valuable for planet formation and orbital evolution models.Comment: Accepted in A&

    Solar-like oscillations in γ\gamma Cephei A as seen through SONG and TESS

    Full text link
    Fundamental stellar parameters such as mass and radius are some of the most important building blocks in astronomy, both when it comes to understanding the star itself and when deriving the properties of any exoplanet(s) they may host. Asteroseismology of solar-like oscillations allows us to determine these parameters with high precision. We investigate the solar-like oscillations of the red-giant-branch star γ\gamma Cep A, which harbours a giant planet on a wide orbit. We did this by utilising both ground-based radial velocities from the SONG network and space-borne photometry from the NASA TESS mission. From the radial velocities and photometric observations, we created a combined power spectrum, which we used in an asteroseismic analysis to extract individual frequencies. We clearly identify several radial and quadrupole modes as well as multiple mixed, dipole modes. We used these frequencies along with spectroscopic and astrometric constraints to model the star, and we find a mass of 1.270.07+0.051.27^{+0.05}_{-0.07} M_\odot, a radius of 4.740.08+0.074.74^{+0.07}_{-0.08} R_\odot, and an age of 5.70.9+0.85.7^{+0.8}_{-0.9} Gyr. We then used the mass of γ\gamma Cep A and our SONG radial velocities to derive masses for γ\gamma Cep B and γ\gamma Cep Ab of 0.3280.012+0.0090.328^{+0.009}_{-0.012} M_\odot and 6.62.8+2.36.6^{+2.3}_{-2.8} MJup_{\rm Jup}, respectively.Comment: 17 pages, 13 figures, accepted for publication in A&

    Phylogenetic comparative assembly

    Get PDF
    Husemann P, Stoye J. Phylogenetic Comparative Assembly. Algorithms for Molecular Biology. 2010;5(1): 3.BACKGROUND:Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. RESULTS:Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a graph that contains the likelihood for each pair of contigs to be adjacent. Subsequently, this graph can be used to compute a layout graph that shows the most promising contig adjacencies in order to aid biologists in finishing the complete genomic sequence. The layout graph shows unique contig orderings where possible, and the best alternatives where necessary. CONCLUSIONS:Our new algorithm for contig ordering uses sequence similarity as well as phylogenetic information to estimate adjacencies of contigs. An evaluation of our implementation shows that it performs better than recent approaches while being much faster at the same tim

    PhiSiGns: an online tool to identify signature genes in phages and design PCR primers for examining phage diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phages (viruses that infect bacteria) have gained significant attention because of their abundance, diversity and important ecological roles. However, the lack of a universal gene shared by all phages presents a challenge for phage identification and characterization, especially in environmental samples where it is difficult to culture phage-host systems. Homologous conserved genes (or "signature genes") present in groups of closely-related phages can be used to explore phage diversity and define evolutionary relationships amongst these phages. Bioinformatic approaches are needed to identify candidate signature genes and design PCR primers to amplify those genes from environmental samples; however, there is currently no existing computational tool that biologists can use for this purpose.</p> <p>Results</p> <p>Here we present PhiSiGns, a web-based and standalone application that performs a pairwise comparison of each gene present in user-selected phage genomes, identifies signature genes, generates alignments of these genes, and designs potential PCR primer pairs. PhiSiGns is available at (<url>http://www.phantome.org/phisigns/</url>; <url>http://phisigns.sourceforge.net/</url>) with a link to the source code. Here we describe the specifications of PhiSiGns and demonstrate its application with a case study.</p> <p>Conclusions</p> <p>PhiSiGns provides phage biologists with a user-friendly tool to identify signature genes and design PCR primers to amplify related genes from uncultured phages in environmental samples. This bioinformatics tool will facilitate the development of novel signature genes for use as molecular markers in studies of phage diversity, phylogeny, and evolution.</p
    corecore