45 research outputs found

    Thoracolumbar and Lumbopelvic Spinal Alignment During the Barbell Back Squat: A Comparison Between Men and Women

    Get PDF
    # Background Maintaining neutral spinal alignment is considered important when performing the barbell back squat exercise. Since male and female lifters may differ in injury location it is important to examine whether they differ in spinal alignment during the back squat. # Objectives The study aimed to quantify the spinal alignment in the upper and lower lumbar spine during the barbell back squat exercise in male and female lifters. Secondary aims were to compare alignment during the back squat to standing habitual lumbar spine alignment and determine whether male and female lifters differ in these aspects. # Study Design Observational, Cross-sectional. # Methods Competitive power- and weightlifters were recruited and performed three repetitions of the barbell back squat exercise using a load equivalent to 70% of their one-repetition maximum. Spinal alignment and range of motion were measured using inertial measurement units placed on the thoracic, lumbar and sacral spine. Data was presented descriptively and comparisons between men and women as well as spinal alignment in four different positions were done with a factorial repeated measures analysis of variance. # Results Twenty-three (14 males, 9 females) were included. During execution of the squat, spinal alignment adjustments in the lumbar spine were made in all three planes of movement, compared to the start position, in both male and female lifters. Compared to their standing habitual posture, all lifters adjusted their upper lumbar spine to a less lordotic position when in the start position of the back squat (standing upright with the barbell on their back). Only male lifters assumed a less lordotic alignment in their lower lumbar spine in the start position compared their habitual posture. # Conclusions Adjustments of spinal alignment, predominantly in the sagittal plane, are made during execution of the back squat in both male and female lifters. Further, lifters adopt a less lordotic alignment with a heavy barbell on their upper back, more so in male than female lifters. In conclusion, it seems that spinal alignment changes noticeably during the barbell back squat. # Level of Evidence 3 ©The Author(s

    Biomechanical methods and error analysis related to chronic musculoskeletal pain

    No full text
    Background Spinal pain is one of humanity’s most frequent complaints with high costs for the individual and society, and is commonly related to spinal disorders. There are many origins behind these disorders e.g., trauma, disc hernia or of other organic origins. However, for many of the disorders, the origin is not known. Thus, more knowledge is needed about how pain affects the neck and neural function in pain affected regions. The purpose of this dissertation was to improve the medical examination of patients suffering from chronic whiplash-associated disorders or other pain related neck-disorders. Methods A new assessment tool for objective movement analysis was developed. In addition, basic aspects of proprioceptive information transmission, which can be of relevance for muscular tension and pain, are investigated by studying the coding of populations of different types of sensory afferents by using a new spike sorting method. Both experiments in animal models and humans were studied to accomplish the goals of this dissertation. Four cats where were studied in acute animal experiments. Mixed ensembles of afferents were recorded from L7-S1 dorsal root filaments when mechanical stimulating the innervated muscle. A real-time spike sorting method was developed to sort units in a multi-unit recording. The quantification of population coding was performed using a method based on principal component analysis. In the human studies, 3D neck movement data were collected from 59 subjects with whiplash-associated disorders (WAD) and 56 control subjects. Neck movement patterns were identified by processing movement data into parameters describing the rotation of the head for each subject. Classification of neck movement patterns was performed using a neural network using processed collected data as input. Finally, the effect of marker position error on the estimated rotation of the head was evaluated by computer simulations. Results Animal experiments showed that mixed ensembles of different types of afferents discriminated better between different muscle stimuli than ensembles of single types of these afferents. All kinds of ensembles showed an increase in discriminative ability with increased ensemble size. It is hypothesized that the main reason for the greater discriminative ability might be the variation in sensitivity tuning among the individual afferents of the mixed ensemble will be larger than that for ensembles of only one type of afferent. In the human studies, the neural networks had a predictivity of 0.89, a sensitivity of 0.90 and a specificity of 0.88 when discriminating between control and WAD subjects. Also, a systematic error along the radial axis of the rigid body added to a single marker had no affect on the estimated rotation of the head. Conclusion The developed spike sorting method, using neural networks, was suitable for sorting a multiunit recording into single units when performing neurophysiological experiments. Also, it was shown that neck movement analysis combined with a neural network could build the basis of a decision support system for classifying suspected WAD or other pain related neck-disorders

    Validity and reliability of wearable motion sensors for clinical assessment of shoulder function in brachial plexus birth injury

    No full text
    The modified Mallet scale (MMS) is commonly used to grade shoulder function in brachial plexus birth injury (BPBI) but has limited sensitivity and cannot grade scapulothoracic and glenohumeral mobility. This study aims to evaluate if the addition of a wearable inertial movement unit (IMU) system could improve clinical assessment based on MMS. The system validity was analyzed with simultaneous measurements with the IMU system and an optical camera system in three asymptomatic individuals. Test–retest and interrater reliability were analyzed in nine asymptomatic individuals and six BPBI patients. IMUs were placed on the upper arm, forearm, scapula, and thorax. Peak angles, range of motion, and average joint angular speed in the shoulder, scapulothoracic, glenohumeral, and elbow joints were analyzed during mobility assessments and MMS tasks. In the validity tests, clusters of reflective markers were placed on the sensors. The validity was high with an error standard deviation below 3.6°. Intraclass correlation coefficients showed that 90.3% of the 69 outcome scores showed good-to-excellent test–retest reliability, and 41% of the scores gave significant differences between BPBI patients and controls with good-to-excellent test–retest reliability. The interrater reliability was moderate to excellent, implying that standardization is important if the patient is followed-up longitudinally

    Designing blended reality space : conceptual foundations and applications

    No full text
    The present paper starts with a crucial discussion about the imbalance between technological and human concerns in the context of human-computer interaction, an imbalance that has arisen partly from the mechanistic aspect and its impact on interaction design. We then introduce the concept of Blended Reality Space, interactive mixed reality environments where the physical and the virtual are seamlessly combined and affect each other. The conceptual grounding and practical examples that illustrate our approach to interaction design are then discussed, adopting a standard figurative representation of blends. This helps understanding the role of blending that meaningfully bridges unbalanced separations between cognition and action, and the physical and the virtual. As a concrete example, the AGNES project, which is aimed at developing “user sensitive home-based systems for successful ageing in a networked society”, is introduced. We believe that the emphasis on Ê»balanceÊŒ or appropriate blending is very important in the development of better interactive systems for health, capitalizing on seamless combinations of the virtual and the physical in Blended Reality Space

    The importance of inertial measurement unit placement in assessing upper limb motion

    No full text
    Motion analysis using inertial measurement units (IMU) has emerged as an alternative to optical motion capture. However, the validity and reliability of upper limb measurements varies significantly between studies. The objective of this study was to determine how sensor placement affects kinematic output in the assessment of motion of the arm, shoulder, and scapula. IMUs were placed proximally/distally on arms, and medially/laterally on the scapula, in a group of eleven healthy participants, while performing nine different motion tasks. Linear regressions and mixed models analysed how these different sensor placements affected the estimated joint motion by establishing the linear relationship between sensors placed on the same body segment. The placement of sensors affected the measured kinematic output considerably, most prominent affect was seen for sensor placement on scapula during flexion and abduction, and on forearm during pronation/supination. The slope of the linear regression lines was 2.5 during flexion, 2.7 during abduction, and 1.8 for forearm pronation/supination. The results of this study suggest that the forearm sensor should be placed on the dorsal side of the forearm, at the distal end; the upper arm sensor should be placed laterally, on the distal part of the arm; and the sensor on the scapula should be placed cranially, along the spine of scapula

    Variability of lumbar spinal alignment among power- and weightlifters during the deadlift and barbell back squat

    No full text
    The aims of the study were to evaluate the relative and absolute variability of upper (T11-L2) and lower (L2-S2) lumbar spinal alignment in power- and weightlifters during the deadlift and back squat exercises, and to compare this alignment between the two lifting groups. Twenty-four competitive powerlifters (n = 14) and weightlifters (n = 10) performed three repetitions of the deadlift and the back squat exercises using a load equivalent to 70% of their respective one-repetition maximum. The main outcome measures were the three-dimensional lumbar spinal alignment for start position, minimum and maximum angle of their spinal alignment, and range of motion measured using inertial measurement units. Relative intra-trial reliability was calculated using the two-way random model intraclass correlation coefficient (ICC) and absolute reliability with minimal detectable change (MDC). The ICC ranged between 0.69 and 0.99 and the MDC between 1 degrees-8 degrees for the deadlift. Corresponding figures for the squat were 0.78-0.99 and 1 degrees-6 degrees. In all participants during both exercises, spinal adjustments were made in both thoracolumbar and lumbopelvic areas in all three dimensions. In conclusion, when performing three repetitions of the deadlift and the squat, lumbar spinal alignment of the lifters did not change much between repetitions and did not differ significantly between power- and weightlifters

    Single sensor measurement of heel-height during the push-off phase of gait

    No full text
    Objective: In healthy gait a forceful push-off is needed to get an efficient leg swing and propulsion, and a high heel lift makes a forceful push-off possible. The power of the push-off is decreased with increased age and in persons with impaired balance and gait. The aim of this study was to evaluate whether a wearable equipment (Striton) and algorithms to estimate vertical heel-height during gait from a single optical distance sensor is reliable and feasible for clinical applications. Approach. To assess heel-height with the Striton system an optical distance sensor was used to measure the distance to the floor along the shank. An algorithm was created to transform this measure to a vertical distance. The heel-height was validated in an experimental setup, against a 3D motion capture system (MCS), and test-retest and day-to-day tests were performed on 10 elderly persons. As a reference material 83 elderly persons were included, and heel-height was measured before and after surgery in four patients with the neurological disorder idiopathic normal pressure hydrocephalus (iNPH). Main results. In the experimental setup the accuracy was high with a maximum error of 2% at all distances, target colours and inclination angles, and the correlation to the MCS was R = 0.94. Test-retest and day-to-day tests were equal within ±1.2 cm. Mean heel-height of the elderly persons was 16.5 ± 0.6 cm and in the patients with iNPH heel-height was increased from 11.2 cm at baseline to 15.3 cm after surgery. Significance. Striton can reliably measure heel-height during gait, with low test-retest and day-to-day variability. The system was easy to attach, and simple to use, which makes it suitable for clinical applications.Previously included in thesis in manuscript form. </p

    Portable Sensors Add Reliable Kinematic Measures to the Assessment of Upper Extremity Function

    No full text
    Ordinal scales with low resolution are used to assess arm function in clinic. These scales may be improved by adding objective kinematic measures. The aim was to analyze within-subject, inter-rater and overall reliability (i.e., including within-subject and inter-rater reliability) and check the system's validity of kinematic measures from inertial sensors for two such protocols on one person. Twenty healthy volunteers repeatedly performed two tasks, finger-to-nose and drinking, during two test sessions with two different raters. Five inertial sensors, on the forearms, upper arms and xiphoid process were used. Comparisons against an optical camera system evaluated the measurement validity. Cycle time, range of motion (ROM) in shoulder and elbow were calculated. Bland-Altman plots and linear mixed models including the generalizability (G) coefficient evaluated the reliability of the measures. Within-subject reliability was good to excellent in both tests (G = 0.80-0.97) and may serve as a baseline when assessing upper extremities in future patient groups. Overall reliability was acceptable to excellent (G = 0.77-0.94) for all parameters except elbow axial rotation in finger-to-nose task and both elbow axial rotation and flexion/extension in drinking task, mainly due to poor inter-rater reliability in these parameters. The low to good reliability for elbow ROM probably relates to high within-subject variability. The sensors provided good to excellent measures of cycle time and shoulder ROM in non-disabled individuals and thus have the potential to improve today's assessment of arm function

    Thoracolumbar and lumbopelvic spinal alignment during the deadlift exercise : a comparison between men and women

    No full text
    Background: A neutral spinal alignment is considered important during the execution of the deadlift exercise to decrease the risk of injury. Since male and female powerlifters experience pain in different parts of their backs, it is important to examine whether men and women differ in spinal alignment during the deadlift. Objectives: The purpose of this study was to quantify the spinal alignment in the upper (thoracolumbar, T11-L2) and lower (lumbopelvic, L2-S2) lumbar spine during the deadlift exercise in male and female lifters. Secondary aims were to compare lumbar spine alignment during the deadlift to standing habitual posture, and determine whether male and female lifters differ in these aspects. Study Design: Observational, Cross-sectional. Methods: Twenty-four (14 men, 10 women) lifters performed three repetitions of the deadlift exercise using 70% of their respective one-repetition maximum. Spinal alignment and spinal range of motion were measured using three inertial measurement units placed on the thoracic, lumbar and sacral spine. Data from three different positions were analyzed; habitual posture in standing, and start and stop positions of the deadlift, i.e. bottom and finish position respectively. Results: During the deadlift, spinal adjustments were evident in all three planes of movement. From standing habitual posture to the start position the lumbar lordosis decreased 13° in the upper and 20° in the lower lumbar spine. From start position to stop position the total range of motion in the sagittal plane was 11° in the upper and 22° in the lower lumbar spine. The decreased lumbar lordosis from standing habitual posture to the start position was significantly greater among men. Conclusions: Men and women adjust their spinal alignment in all three planes of movement when performing a deadlift and men seem to make greater adjustments from their standing habitual posture to start position in the sagittal plane. Level of Evidence 3
    corecore