43 research outputs found

    Differential Susceptibility of Human Peripheral Blood T Cells to Suppression by Environmental Levels of Sodium Arsenite and Monomethylarsonous Acid

    Get PDF
    Human exposure to arsenic in drinking water is known to contribute to many different health outcomes such as cancer, diabetes, and cardiopulmonary disease. Several epidemiological studies suggest that T cell function is also altered by drinking water arsenic exposure. However, it is unclear how individual responses differ to various levels of exposure to arsenic. Our laboratory has recently identified differential responses of human peripheral blood mononuclear cell (HPMBC) T cells as measured by polyclonal T cell activation by mitogens during sodium arsenite exposure. T cells from certain healthy individuals exposed to various concentrations (1–100 nM) of arsenite in vitro showed a dose-dependent suppression at these extremely low concentrations (∼0.1–10 ppb) of arsenite, whereas other individuals were not suppressed at low concentrations. In a series of more than 30 normal donors, two individuals were found to be sensitive to low concentration (10 nM equivalent ∼1 ppb drinking water exposure) to sodium arsenite-induced inhibition of T cell proliferation produced by phytohemagglutinin (PHA) and anti-CD3/anti-CD28. In an arsenite-susceptible individual, arsenite suppressed the activation of Th1 (Tbet) cells, and decreased the percentage of cells in the double positive Th17 (RORγt) and Treg (FoxP3) population. While the majority of normal blood donors tested were not susceptible to inhibition of proliferation at the 1–100 nM concentrations of As+3, it was found that all donors were sensitive to suppression by 100 nM monomethylarsonous acid (MMA+3), a key metabolite of arsenite. Thus, our studies demonstrate for the first time that low ppb-equivalent concentrations of As+3 are immunosuppressive to HPBMC T cells in some individuals, but that most donor HPBMC are sensitive to suppression by MMA+3 at environmentally relevant exposure levels

    Differential sensitivities of bone marrow, spleen and thymus to genotoxicity induced by environmentally relevant concentrations of arsenite

    Get PDF
    It is known in humans and mouse models, that drinking water exposures to arsenite (As+3) leads to immunotoxicity. Previously, our group showed that certain types of immune cells are extremely sensitive to arsenic induced genotoxicity. In order to see if cells from different immune organs have differential sensitivities to As+3, and if the sensitivities correlate with the intracellular concentrations of arsenic species, male C57BL/6J mice were dosed with 0, 100 and 500 ppb As+3 via drinking water for 30 d. Oxidation State Specific Hydride Generation-Cryotrapping- Inductively Coupled Plasma- Mass Spectrometry (HG- CT- ICP- MS) was applied to analyze the intracellular arsenic species and concentrations in bone marrow, spleen and thymus cells isolated from the exposed mice. A dose-dependent increase in intracellular monomethylarsonous acid (MMA+3) was observed in both bone marrow and thymus cells, but not spleen cells. The total arsenic and MMA+3 levels were correlated with an increase in DNA damage in bone marrow and thymus cells. An in vitro treatment of 5, 50 and 500 nM As+3 and MMA+3 revealed that bone marrow cells are most sensitive to As+3 treatment, and MMA+3 is more genotoxic than As+3. These results suggest that the differential sensitivities of the three immune organs to As+3 exposure are due to the different intracellular arsenic species and concentrations, and that MMA+3 may play a critical role in immunotoxicity

    Minimal uranium accumulation in lymphoid tissues following an oral 60-day uranyl acetate exposure in male and female C57BL/6J mice.

    No full text
    High levels of uranium (U) exist in soil, water, and air in the Southwestern United States due, in part, to waste generated from more than 160,000 abandoned hard rock mines located in this region. As a result, many people living in this region are chronically exposed to U at levels that have been linked to detrimental health outcomes. In an effort to establish a relevant in vivo mouse model for future U immunotoxicity studies, we evaluated the tissue distribution of U in immune organs; blood, bone marrow, spleen, and thymus, as well as femur bones, kidneys, and liver, following a 60-d drinking water exposure to uranyl acetate (UA) in male and female C57BL/6J mice. Following the 60-d exposure, there was low overall tissue retention of U (<0.01%) at both the 5 and the 50 ppm (mg/L) oral concentrations. In both male and female mice, there was limited U accumulation in immune organs. U only accumulated at low concentrations in the blood and bone marrow of male mice (0.6 and 16.8 ng/g, respectively). Consistent with previous reports, the predominant sites of U accumulation were the femur bones (350.1 and 399.0 ng/g, respectively) and kidneys (134.0 and 361.3 ng/g, respectively) of male and female mice. Findings from this study provide critical insights into the distribution and retention of U in lymphoid tissues following chronic drinking water exposure to U. This information will serve as a foundation for immunotoxicological assessments of U, alone and in combination with other metals

    Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses humoral immunity in vivo.

    No full text
    It is known that exposure to As(+3) via drinking water causes a disruption of the immune system and significantly compromises the immune response to infection. The purpose of these studies was to assess the effects of As(+3) on bone marrow progenitor cell colony formation and the humoral immune response to a T-dependent antigen response (TDAR) in vivo. In a 30 day drinking water study, mice were exposed to 19, 75, or 300 ppb As(+3). There was a decrease in bone marrow cell recovery, but not spleen cell recovery at 300 ppb As(+3). In the bone marrow, As(+3) altered neither the expression of CD34+ and CD38+ cells, markers of early hematopoietic stem cells, nor CD45-/CD105+, markers of mesenchymal stem cells. Spleen cell surface marker CD45 expression on B cells (CD19+), T cells (CD3+), T helper cells (CD4+) and cytotoxic T cells (CD8+), natural killer (NK+), and macrophages (Mac 1+) were not altered by the 30 day in vivo As(+3) exposure. Functional assays of CFU-B colony formation showed significant selective suppression (p<0.05) by 300 ppb As(+3) exposure, whereas CFU-GM formation was not altered. The TDAR of the spleen cells was significantly suppressed at 75 and 300 ppb As(+3). In vitro studies of the bone marrow revealed a selective suppression of CFU-B by 50 nM As(+3) in the absence of apparent cytotoxicity. Monomethylarsonous acid (MMA(+3)) demonstrated a dose-dependent and selective suppression of CFU-B beginning at 5 nM (p<0.05). MMA(+3) suppressed CFU-GM formation at 500 nM, a concentration that proved to be nonspecifically cytotoxic. As(+5) did not suppress CFU-B and/or CFU-GM in vitro at concentrations up to 500 nM. Collectively, these results demonstrate that As(+3) and likely its metabolite (MMA(+3)) target lymphoid progenitor cells in mouse bone marrow and mature B and T cell activity in the spleen
    corecore