61 research outputs found

    Automated detection of hyperreflective foci in the outer nuclear layer of the retina

    Get PDF
    PURPOSE: Hyperreflective foci are poorly understood transient elements seen on optical coherence tomography (OCT) of the retina in both healthy and diseased eyes. Systematic studies may benefit from the development of automated tools that can map and track such foci. The outer nuclear layer (ONL) of the retina is an attractive layer in which to study hyperreflective foci as it has no fixed hyperreflective elements in healthy eyes. In this study, we intended to evaluate whether automated image analysis can identify, quantify and visualize hyperreflective foci in the ONL of the retina. METHODS: This longitudinal exploratory study investigated 14 eyes of seven patients including six patients with optic neuropathy and one with mild non-proliferative diabetic retinopathy. In total, 2596 OCT B-scan were obtained. An image analysis blob detector algorithm was used to detect candidate foci, and a convolutional neural network (CNN) trained on a manually labelled subset of data was then used to select those candidate foci in the ONL that fitted the characteristics of the reference foci best. RESULTS: In the manually labelled data set, the blob detector found 2548 candidate foci, correctly detecting 350 (89%) out of 391 manually labelled reference foci. The accuracy of CNN classifier was assessed by manually splitting the 2548 candidate foci into a training and validation set. On the validation set, the classifier obtained an accuracy of 96.3%, a sensitivity of 88.4% and a specificity of 97.5% (AUC 0.989). CONCLUSION: This study demonstrated that automated image analysis and machine learning methods can be used to successfully identify, quantify and visualize hyperreflective foci in the ONL of the retina on OCT scans

    NORdic trial of oral Methylprednisolone as add-on therapy to Interferon beta-1a for treatment of relapsing-remitting Multiple Sclerosis (NORMIMS study): a randomised, placebo-controlled trial

    Get PDF
    Treatment of relapsing-remitting multiple sclerosis with interferon beta is only partly effective, and new more effective and safe strategies are needed. Our aim was to assess the efficacy of oral methylprednisolone as an add-on therapy to subcutaneous interferon beta-1a to reduce the yearly relapse rate in patients with relapsing-remitting multiple sclerosis. Methods: NORMIMS (NORdic trial of oral Methylprednisolone as add-on therapy to Interferon beta-1a for treatment of relapsing-remitting Multiple Sclerosis) was a randomised, placebo-controlled trial done in 29 neurology departments in Denmark, Norway, Sweden, and Finland. We enrolled outpatients with relapsing-remitting multiple sclerosis who had had at least one relapse within the previous 12 months despite subcutaneous interferon beta-1a treatment (44 microg three times per week). We randomly allocated patients by computer to add-on therapy of either 200 mg methylprednisolone or matching placebo, both given orally on 5 consecutive days every 4 weeks for at least 96 weeks. The primary outcome measure was mean yearly relapse rate. Primary analyses were by intention to treat. This trial is registered, number ISRCTN16202527. Findings: 66 patients were assigned to interferon beta and oral methylprednisolone and 64 were assigned to interferon beta and placebo. A high proportion of patients withdrew from the study before week 96 (26% [17 of 66] on methylprednisolone vs 17% [11 of 64] on placebo). The mean yearly relapse rate was 0.22 for methylprednisolone compared with 0.59 for placebo (62% reduction, 95% CI 39-77%; p<0.0001). Sleep disturbance and neurological and psychiatric symptoms were the most frequent adverse events recorded in the methylprednisolone group. Bone mineral density had not changed after 96 weeks. Interpretation: Oral methylprednisolone given in pulses every 4 weeks as an add-on therapy to subcutaneous interferon beta-1a in patients with relapsing-remitting multiple sclerosis leads to a significant reduction in relapse rate. However, because of the small number of patients and the high dropout rate, these findings need to be corroborated in larger cohorts

    Detection of capillary abnormalities in early diabetic retinopathy using scanning laser ophthalmoscopy and optical coherence tomography combined with adaptive optics

    Get PDF
    This study tested if a high-resolution, multi-modal, multi-scale retinal imaging instrument can provide novel information about structural abnormalities in vivo. The study examined 11 patients with very mild to moderate non-proliferative diabetic retinopathy (NPDR) and 10 healthy subjects using fundus photography, optical coherence tomography (OCT), OCT angiography (OCTA), adaptive optics scanning laser ophthalmoscopy (AO-SLO), adaptive optics OCT and OCTA (AO-OCT(A)). Of 21 eyes of 11 patients, 11 had very mild NPDR, 8 had mild NPDR, 2 had moderate NPDR, and 1 had no retinopathy. Using AO-SLO, capillary looping, inflections and dilations were detected in 8 patients with very mild or mild NPDR, and microaneurysms containing hyperreflective granular elements were visible in 9 patients with mild or moderate NPDR. Most of the abnormalities were seen to be perfused in the corresponding OCTA scans while a few capillary loops appeared to be occluded or perfused at a non-detectable flow rate, possibly because of hypoperfusion. In one patient with moderate NPDR, non-perfused capillaries, also called ghost vessels, were identified by alignment of corresponding en face AO-OCT and AO-OCTA images. The combination of multiple non-invasive imaging methods could identify prominent microscopic abnormalities in diabetic retinopathy earlier and more detailed than conventional fundus imaging devices.</p

    APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies.

    Get PDF
    OBJECTIVE To update the consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results, thus revising the previously published Advised Protocol for OCT Study Terminology and Elements (APOSTEL) recommendations. METHODS To identify studies reporting quantitative OCT results, we performed a PubMed search for the terms "quantitative" and "optical coherence tomography" from 2015 to 2017. Corresponding authors of the identified publications were invited to provide feedback on the initial APOSTEL recommendations via online surveys following the principle of a modified Delphi method. The results were evaluated and discussed by a panel of experts and changes to the initial recommendations were proposed. A final survey was recirculated among the corresponding authors to obtain a majority vote on the proposed changes. RESULTS A total of 116 authors participated in the surveys, resulting in 15 suggestions, of which 12 were finally accepted and incorporated into an updated 9-point checklist. We harmonized the nomenclature of the outer retinal layers, added the exact area of measurement to the description of volume scans, and suggested reporting device-specific features. We advised to address potential bias in manual segmentation or manual correction of segmentation errors. References to specific reporting guidelines and room light conditions were removed. The participants' consensus with the recommendations increased from 80% for the previous APOSTEL version to greater than 90%. CONCLUSIONS The modified Delphi method resulted in an expert-led guideline (evidence Class III; Grading of Recommendations, Assessment, Development and Evaluations [GRADE] criteria) concerning study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition analysis, nomenclature and abbreviations, and statistical approach. It will be essential to update these recommendations to new research and practices regularly

    Optical coherence tomography in multiple sclerosis

    No full text

    Vaccines and multiple sclerosis:a systematic review

    No full text
    corecore