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Abstract

Purpose: Hyperreflective foci are poorly understood transient elements seen on 

optical coherence tomography (OCT) of the retina in both healthy and diseased 

eyes. Systematic studies may benefit from the development of automated tools that 

can map and track such foci. The outer nuclear layer (ONL) of the retina is an 

attractive layer in which to study hyperreflective foci as it has no fixed hyper-

reflective elements in healthy eyes. In this study, we intended to evaluate whether 

automated image analysis can identify, quantify and visualize hyperreflective foci 

in the ONL of the retina.

Methods: This longitudinal exploratory study investigated 14 eyes of seven patients 

including six patients with optic neuropathy and one with mild non-proliferative 

diabetic retinopathy. In total, 2596 OCT B-scan were obtained. An image analysis 

blob detector algorithm was used to detect candidate foci, and a convolutional 

neural network (CNN) trained on a manually labelled subset of data was then 

used to select those candidate foci in the ONL that fitted the characteristics of the 

reference foci best.

Results: In the manually labelled data set, the blob detector found 2548 candidate 

foci, correctly detecting 350 (89%) out of 391 manually labelled reference foci. The 

accuracy of CNN classifier was assessed by manually splitting the 2548 candidate 

foci into a training and validation set. On the validation set, the classifier obtained 

an accuracy of 96.3%, a sensitivity of 88.4% and a specificity of 97.5% (AUC 0.989).

Conclusion: This study demonstrated that automated image analysis and machine 

learning methods can be used to successfully identify, quantify and visualize hy-

perreflective foci in the ONL of the retina on OCT scans.
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convolutional neural network, hyperreflective foci, outer nuclear layer of the retina, optical 
coherence tomography
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1  |   INTRODUCTION

Originally, the term ‘hyperreflective foci’ was used to de-
fine any hyperreflective lesion, dotted or focal in appear-
ance, when imaged using optical coherence tomography 
(OCT) at any retinal layer (Fragiotta et al.,  2021). The 
presence of hyperreflective foci was first described in 
diabetic macular oedema as a morphologic sign of lipid 
extravasation (Bolz et al.,  2009). However, in the past 
decade, hyperreflective foci have been characterized in 
a considerable amount of different retinal disorders and 
with the use of various of morphological entities such 
as migrating retinal pigment epithelium cells, macro-
phages/microglia in age-related macular degeneration 
(AMD) (Curcio et al.,  2017; Framme et al.,  2010; Pang 
et al., 2015) and degenerated photoreceptor cells (Torm 
et al., 2020; Uji et al., 2012). Furthermore, a cell-sized mi-
grating intraretinal hyperreflective element has been ob-
served incidentally in a healthy child (Torm et al., 2020).

Although no consensus about the origin of hyper-
reflective foci exists (Wang et al., 2011), studies suggest 
that hyperreflective foci may represent aggregates of ac-
tivated microglia (S. Vujosevic et al. 2013). In contrast, 
retinal exudates, microaneurysms and haemorrhages are 
all classified as subtypes of ‘hyperreflective elements’ 
and can be distinguished from the hyperreflective foci 
phenotype based on specific morphological characteris-
tics (Kodjikian et al., 2019).

Hyperreflective foci are not detectable by fundus pho-
tography and their occasional presence in healthy sub-
jects suggests that they are distinct from hard exudates. 
They are currently being investigated as a clinically ac-
cessible in vivo diagnostic and prognostic biomarker of 
potential interest in a broad spectrum of retinal disor-
ders (Abri Aghdam et al., 2015; Altay et al., 2016; Borrelli 
et al.,  2019; Busch K. et al.,  2020; Chen et al.,  2016; 
Fragiotta et al., 2018). The manual mapping and count-
ing of hyperreflective foci are a time-consuming process. 
Therefore, the development and application of tools to 
effectively visualize and quantify the presence and flux 
of hyperreflective foci is of great importance and may 
assist in the clinical diagnosis and in the monitoring of 
progression and treatment response.

In this study, we determined whether an image analy-
sis pipeline consisting of a convolutional neural network 
(CNN) classifier may be used for accurate quantifica-
tion and visualization of hyperreflective foci in the outer 
nuclear layer of the retina. The avascular outer nuclear 
layer of the retina was of particular interest in this study 
because hyperreflective foci imaged on OCT within 
this region could be assumed to represent true foci, not 
vessels.

2  |   M ATERI A LS A N D M ETHODS

In this exploratory longitudinal study, we investigated six 
patients presenting with an ophthalmoscopically normal 
fundus and one patient with reversible fundus abnor-
malities (see patient characteristics, Table 1). An ethical 
waiver for the use of anonymized data from each patient 
was obtained. The study was conducted in agreement 

with the Tenets of the Declaration of Helsinki and was 
approved by the local Ethics Committee. Fourteen eyes 
of seven patients were evaluated.

In every patient, two to four OCT examinations were 
performed for each eye, over time (see supplemental ma-
terial). We acquired in total, 2596 B-scans across all time 
points and patients. All B-scans were examined by one 
independent examiner who was blinded to the clinical 
characteristics of the patients (e.g. age, gender, visual 
function and diagnosis). The examiner manually la-
belled hyperreflective foci in the outer nuclear layer, de-
fined as the region between the outer plexiform layer and 
retinal pigment epithelium (RPE) line. Hyperreflective 
foci were manually annotated according to the follow-
ing fundamental features: (i) location within the outer 
retina; (ii) size ≤30 μm; (iii) absence of a shadow cast by 
the hyperreflective foci and (iv) reflectivity similar to the 
retinal nerve fibre layer (RNFL). In the latest interna-
tional consensus guidelines, these morphological char-
acteristics were incorporated as the diagnostic criteria 
for hyperreflective foci (Kodjikian et al.,  2019; Lee & 
Chung, 2018; Midena et al., 2018). In total, 391 hyperre-
flective foci were manually annotated among the 189 B 
scans originating from nine eyes of seven patients.

2.1  |  Automatic detection of 
hyperreflective foci

The hyperreflective foci detection method comprises (1) 
candidate detection, (2) feature extraction and (3) can-
didate classification (see Figure 1). Candidate detection 
uses ‘blob’ detection (Lindeberg, 1996) and detects likely 
candidates for hyperreflective foci (blobs) in the image. 
Feature extraction extracts a set of measurements for 
each of the candidates detected in the first step. The fea-
tures are radius and the intensity of the detected hyper-
reflective foci candidate, proximity to a blood vessel in 
the retina, and the location within the retinal layer where 
the hyperreflective focus candidate was detected. We ap-
plied layer detection (Li et al., 2016; Haeker et al., 2007) 
to find the retinal layers. Furthermore, image patches 
centred around hyperreflective foci candidates were 
extracted. The third part, feature classification, uses 
CNN for classification of the extracted patches and the 
features.

The 2548 B-scans for the classification consisted of 
positive and negative hyperreflective foci candidates 
found by blob detection. As we report in the results sec-
tion, there was a large-class imbalance in this data set 
with 350 positive and 2198 negative candidates. To alle-
viate the class imbalance, we oversampled the positive 
examples.

Data were divided into training (80%) and validation 
(20%) sets. The CNN was trained on the training data. 
However, the CNN performance on the on-validation 
data was slightly biased as we did not split specific im-
ages or eyes into a test and training set. When we as-
sessed the classification on the validation set, the CNN 
may have seen a training example originating from the 
same patient, eye (volume) or even specific B-scan giving 
rise to unwanted bias.
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2.2  |  OCT acquisition

The development of robust AI algorithms using supervised 
learning benefits from large and heterogeneous training 
data sets. Hence, different retinal disorders were examined 
in this study and data were acquired from different OCT 
scanning protocols. All patients underwent OCT imaging 
with Spectralis OCT machines (Heidelberg Engineering, 
Heidelberg, Germany, software version 6.0.13). Five of the 
scan protocols comprised a peripapillary ring scan (circu-
lar scans with 15 degrees diameter, Automatic Real-Time 
[ART] 15–25) and a macular volume scan (scan centred on 
the fovea with 30 × 15 degrees, 19 vertical B-scans, ART, 
B-scan distance varies from 239–256 μm). In the last two 
scan protocols, OCT data originate from peripapillary 
ring scans (circular scans with 15 degrees' diameter, ART 
set from 15 to 25) and macular volume scans (scans cen-
tred on the fovea with 20 × 20 degrees, 25 vertical B-scans, 
ART 15–50, B-scan distance varied from 234–250 μm). All 
scans were performed in high-resolution mode with eye 

TA B L E  1   Demographical and clinical characteristics of the individual patients are presented (i.e. diagnosis, best corrected visual acuity in 
Snellen decimal notation, visual field tests and treatment)

Patient characteristics

Gender

Male/female ratio 2/5

Age–years

Median (range) 37 (20–39)

Diagnosis Best corrected visual acuity Visual field Treatment

Patient No. 1
Diagnosis ‘left optic nerve 

lesion unknown cause’

At initial presentation: 
Right eye: 1.0
Left eye: 0.2
After 7 months
Right eye: 1.0
Left eye: 0.5

Visual field defects on left eye Treated with Solu-medrol 1000 mg 
intravenous (IV) for 3 days

Patient No.2
Type 1 diabetes mild, non-

proliferative retinopathy. 
Diagnosis of left optic 
atrophy

At initial presentation: 
Right eye: 1.0
Left eye: not recordable.
1 month later: 
Right eye: 1.0 
Left eye: 0.1

Left-sided hemianopia with 
macula sparing on right eye

Left eye not recordable

IV Solu-medrol

Patient No.3
Presumed left NA-AION

At initial presentation: 
Right eye: not recordable
Left eye: 0.8

Visual field defect on left eye 
(mostly infero-temporal)

Solu-Medrol IV, Nexium

Patient No.4
Left optic neuritis

At initial presentation: 
Right eye: 1.0
Left eye: 0.25

Left centrocecal scotoma No medication given.

Patient No.5
Diagnosis ‘optic neuritis’ of 

unknown cause

n/a.

Patient No.6 Diagnosis of 
right optic neuritis, most 
likely an isolated episode 
of neuroretinitis

At initial presentation: 
Right eye: 1.0 
Left eye 1.0

Loss of vision in the right eye
Visual field was full to red pin 

in left eye

No medication given.

Patient No.7
Left acute optic neuropathy

At initial presentation: 
Right eye: 1.0
Left eye 0.1
6 months later
Right eye: 1.0
Left eye: 0.6

The right eye was normal. 
Peripheral field loss in the 
left eye.

Amitriptyline 50 mg 
Azathioprine 50 mg twice daily

F I G U R E  1   Visualization of the method pipeline showing 
candidate foci in the outer nuclear layer that were sufficiently 
separated from the hyperreflective outer plexiform layer (√) and 
candidate foci that are embedded within in the ganglion cell layer/
inner plexiform layer (×).
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tracking enabled. The OSCAR-IB criteria were used to as-
sess the quality of the retinal OCT scans, and we report 
results in agreement with the Advised Protocol for OCT 
Study Terminology and Elements (APOSTEL).

3  |   RESU LTS

In the manually labelled data set, the blob detector 
found in total 2548 candidate foci. The algorithm cor-
rectly detected 350 out of the 391 manually annotated 
hyperreflective foci, indicating that the blob detector 
misses around 11% of hyperreflective foci, identified as 
true foci by the grader.

The CNN classifier confusion matrix can be seen in 
Table 2. The accuracy of CNN classifier was assessed 
by splitting the 2548 detections in the manually la-
belled data set into training (80%) and validation (20%) 
data sets. On the validation data set, the classifier 

obtained an accuracy of 96.3%, a sensitivity of 88.4% 
and a specificity of 97.5%. Corresponding receiver op-
erating characteristic (ROC) curve on the validation 
set achieved an area under the curve of 0.989 (see ROC 
curve, Figure 2). Examples of the classification method 
and heatmap visualizations of hyperreflective foci are 
shown in Figures 3–5. A box plot showing the distri-
bution of data obtained from feature extraction can be 
seen in Figure 6.

4  |   DISCUSSION

This longitudinal exploratory study demonstrated that 
our automated image analysis pipeline performed suc-
cessfully with an overall high accuracy of the CNN clas-
sification (AUC of 0.989) at detecting hyperreflective foci 
in the outer nuclear layer.

In general, image segmentation is a problem often 
tackled with deep learning architectures such as a UNet 
(Ronneberger et al., 2015). However, a UNet would not be 
able to reliably segment the hyperreflective foci for multi-
ple reasons in this study. Our data comprise OCT images 
that often possessed only a small number of hyperreflec-
tive foci. Consequently, there would not be enough data 
to train a UNet since a single data point for a UNet is 
a full image. A large data set with thousands or at least 
hundreds of data points is necessary when training deep 
learning-based algorithms. If a data point is a single hy-
perreflective focus instead, then the lack of data is much 
less problematic. In this case, we have 391 positive data 
points along with thousands of negative data points. The 
segmentation pipeline therefore consists of first locating 
likely hyperreflective foci with blob analysis and then 
classifying them with a CNN. A segmentation problem 
is essentially converted into a classification one. The fea-
tures we extracted are useful in helping the CNN classify 
hyperreflective foci. Additionally, they provide useful in-
formation about, for example the distribution of foci radii 
and the retinal layer position of the hyperreflective foci. 
These features could potentially inform which character-
istics of hyperreflective foci are associated with healthy/
unhealthy specimens. A naive UNet segmentation would 
be unable to extract these features.

The frequent presence of hyperreflective foci with 
OCT calls for a systematic study of their appearance, 
location, density, movement, disappearance and associ-
ated health characteristics. In this study, we only con-
sidered ophthalmoscopically normal eyes or eyes with 
reversible abnormalities on funduscopic examination. 
The approach in many prior studies has been to look 
at severely abnormal conditions such as radiation ret-
inopathy (Frizziero et al.,  2016) or neovascular AMD 
(Mokhtari et al., 2017). In this study, we investigated con-
ditions with no confounding elements of structural ab-
normalities in the retina which improved the algorithm 
robustness. This approach is potentially applicable in 
conditions with scant hyperreflective foci such as mul-
tiple sclerosis (Pilotto et al., 2020), where the retina may 
by relatively normal, and therefore it is easier to train 
automated image analysis systems.

TA B L E  2   Confusion matrix used for evaluating the performance 
of the blob classification model on validation data

CNN classifier Ground truth = 1
Ground 
truth = 0

Prediction = 1 61 (88.4%) 11 (2.5%)

Prediction = 0 8 (11.6%) 430 (97.5%)

F I G U R E  2   Receiver operator curve (ROC) the validation data 
set. The area under the curve (AUC) is 0.989.

F I G U R E  3   Examples of the classification method. In patient 1, 
the CNN classifier detects foci pattern (green circles) from the non-
foci pattern (red circles) in the outer nuclear layer of the retina.
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Currently, very few studies concerning the auto-
mated or semi-automated detection of retinal hyper-
reflective foci have been performed (Varga et al., 2019; 
Yu et al., 2019). These studies are criticized for being 
unreliable and applicable only from an informative 
and technical point of view (Midena et al., 2021). 
Moreover, these studies often examine both the inner 
and outer retinal layers where it can be challenging to 
distinguish between vessels and intraretinal hyperre-
flective elements. To overcome this limitation, only the 
outer nuclear layer was examined in this study. The 

outer nuclear layer is considered avascular and there-
fore every hyperreflective foci seen on an OCT scan 
can be assumed to represent a true candidate focus and 
not a vessel in cross-section.

In this study, heatmap visualizations often revealed dis-
tinct pattern of hyperreflective foci being located in the 
fovea or close to the optic nerve head. The use of neural 
networks for the quantification and visualization of hy-
perreflective foci could assist in tracking subtle intrareti-
nal changes over time that are difficult to detect for even 
specialists since the magnitude of the change can be very 

F I G U R E  4   OCT B-scans presented at three different dates on same location in the left retina of patient 2. The highlighted slice at the left 
fundus image is shown in the middle. A heatmap of detected hyperreflective foci is overlayed on the fundus image (right). HF, hyperreflective 
foci.

Fundus image Highlighted OCT B-scan Fundus image     
with detected HF

F I G U R E  5   Fundus images with overlayed heatmap of detected hyperreflective foci in patient 3, 4, 6 and 7.
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small (Lang et al.,  2016). Furthermore, the localization 
and quantification of the actual size of foci structure in the 
retina is important. One example is shown in Figure 5 with 
a central serous chorioretinopathy with detachment of the 
macula but has the added feature of cystoid oedema. The 
morphological features are illustrated in great details and 
the hyperreflective elements that are seen after resolution 
of the detachment are much larger than the hyperreflec-
tive foci we see in healthy subjects.

Limitations of this study include the small sample 
size and the fact that OCT scans were obtained from 
only one imaging platform type and not compared with 
other commercially available OCT devices. However, we 
would expect to benefit from using a heterogeneous OCT 
material originating from slightly different OCT scan-
ning protocols on the Heidelberg machines. Regarding 

methodological issues all scans need to be examined for 
motion artefacts arising from averaging. Furthermore, B 
scans need to be closely spaced in order to thoroughly 
evaluate hyperreflective foci movement and errors in 
scan positioning. Due to the distance between B scans a 
potential variation in the distribution of hyperreflective 
foci was not considered detectable in this study.

Longitudinal analysis of hyperreflective foci with 
high-quality OCT data sets may be crucial in future for 
understanding the pathophysiologic processes under-
lying disease progression in various retinal disorders. 
Further prospective studies are necessary to establish 
the time intervals and transversal resolution needed to 
sufficiently and accurate detect and track changes in the 
density and distribution of hyperreflective foci over time 
in different retinal disorders.

F I G U R E  6   (a) (i) Radius (pixels) shows radius of blobs detected in the pixel unit. One pixel is equal to 2.5 μm. (ii) The layer numbers refer 
to specific retinal layers and every hyperreflective foci have different anatomical locations corresponding to certain retinal layer numbers. (iii) 
Max. pixel intensity reflects the brightest pixel contained in blobs detected. (iv) Vessel proximity is a measure of how close a hyperreflective 
focus is to blood vessels. High values mean close proximity to blood vessels. (b) OCT B-scan with layer numbers marked.
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5  |   CONCLUSIONS

In conclusion, this study demonstrates that automated 
image analysis and machine learning methods can be ap-
plied to successfully identify, quantify and visualize the 
presence and time-resolved dynamics of hyperreflective 
foci in the outer nuclear layer of the retina using high-
quality OCT scans.
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