13 research outputs found

    Comparative genomic analysis of pleurotus species reveals insights into the evolution and coniferous utilization of Pleurotus placentodes

    Get PDF
    Pleurotus placentodes (PPL) and Pleurotus cystidiosus (PCY) are economically valuable species. PPL grows on conifers, while PCY grows on broad-leaved trees. To reveal the genetic mechanism behind PPL’s adaptability to conifers, we performed de novo genome sequencing and comparative analysis of PPL and PCY. We determined the size of the genomes for PPL and PCY to be 36.12 and 42.74 Mb, respectively, and found that they contain 10,851 and 15,673 protein-coding genes, accounting for 59.34% and 53.70% of their respective genome sizes. Evolution analysis showed PPL was closely related to P. ostreatus with the divergence time of 62.7 MYA, while PCY was distantly related to other Pleurotus species with the divergence time of 111.7 MYA. Comparative analysis of carbohydrate-active enzymes (CAZYmes) in PPL and PCY showed that the increase number of CAZYmes related to pectin and cellulose degradation (e.g., AA9, PL1) in PPL may be important for the degradation and colonization of conifers. In addition, geraniol degradation and peroxisome pathways identified by comparative genomes should be another factors for PPL’s tolerance to conifer substrate. Our research provides valuable genomes for Pleurotus species and sheds light on the genetic mechanism of PPL’s conifer adaptability, which could aid in breeding new Pleurotus varieties for coniferous utilization

    Genome Analysis of <i>Hypomyces perniciosus</i>, the Causal Agent of Wet Bubble Disease of Button Mushroom (<i>Agaricus bisporus</i>)

    No full text
    The mycoparasitic fungus Hypomyces perniciosus causes wet bubble disease of mushrooms, particularly Agaricus bisporus. The genome of a highly virulent strain of H. perniciosus HP10 was sequenced and compared to three other fungi from the order Hypocreales that cause disease on A. bisporus. H. perniciosus genome is ~44 Mb, encodes 10,077 genes and enriched with transposable elements up to 25.3%. Phylogenetic analysis revealed that H. perniciosus is closely related to Cladobotryum protrusum and diverged from their common ancestor ~156.7 million years ago. H. perniciosus has few secreted proteins compared to C. protrusum and Trichoderma virens, but significantly expanded protein families of transporters, protein kinases, CAZymes (GH 18), peptidases, cytochrome P450, and SMs that are essential for mycoparasitism and adaptation to harsh environments. This study provides insights into H. perniciosus evolution and pathogenesis and will contribute to the development of effective disease management strategies to control wet bubble disease

    Table1_Comparative transcriptomic insights into the domestication of Pleurotus abieticola for coniferous cultivation.XLSX

    No full text
    Introduction:Pleurotus abieticola, a promising edible fungus in the Pleurotaceae family, especially its ability to utilize coniferous substrate, holds significant potential for commercial cultivation. However, few reports on the adaptation of P. abieticola to coniferous substrate from the perspective of omics.Methods: This study explores the biological characteristics, domestication process, and nutritional composition of P. abieticola, along with its adaptability to coniferous substrates using transcriptomics. We assessed biological characteristics, optimizing mycelial growth on agar medium with varied carbon and nitrogen sources, temperature, and pH. Additionally, the optimization process extended to fruiting bodies, where impact on the differentiation were evaluated under varying light conditions. Fruiting body nutrient composition was analyzed per the Chinese National Food Safety Standard. Transcriptome sequencing focused on P. abieticola mycelial colonized coniferous and broadleaved substrates.Results and Discussion: The optimal conditions for mycelial growth were identified: dextrin (carbon source), diammonium hydrogen phosphate (nitrogen source), 25°C (temperature), and pH 7.0. White light promoted fruiting body growth and differentiation. Larch substrate exhibited superior yield (190 g) and biological efficiency (38.0%) compared to oak (131 g, 26.2%) and spruce (166 g, 33.2%). P. abieticola showcased high dietary fiber, protein, and total sugar content, low fat, and sufficient microelements. Transcriptome analysis revealed significant key genes involved in lignocellulose degradation, stress-resistant metabolism, and endocytosis metabolism, underscoring their pivotal for coniferous adaptation. This study offers valuable insights for the commercial development and strain breeding of P. abieticola, efficiently leveraging conifer resources. The findings underscore its potential as a valuable source for food, medicinal products, and biotechnological applications.</p

    Table3_Comparative transcriptomic insights into the domestication of Pleurotus abieticola for coniferous cultivation.XLSX

    No full text
    Introduction:Pleurotus abieticola, a promising edible fungus in the Pleurotaceae family, especially its ability to utilize coniferous substrate, holds significant potential for commercial cultivation. However, few reports on the adaptation of P. abieticola to coniferous substrate from the perspective of omics.Methods: This study explores the biological characteristics, domestication process, and nutritional composition of P. abieticola, along with its adaptability to coniferous substrates using transcriptomics. We assessed biological characteristics, optimizing mycelial growth on agar medium with varied carbon and nitrogen sources, temperature, and pH. Additionally, the optimization process extended to fruiting bodies, where impact on the differentiation were evaluated under varying light conditions. Fruiting body nutrient composition was analyzed per the Chinese National Food Safety Standard. Transcriptome sequencing focused on P. abieticola mycelial colonized coniferous and broadleaved substrates.Results and Discussion: The optimal conditions for mycelial growth were identified: dextrin (carbon source), diammonium hydrogen phosphate (nitrogen source), 25°C (temperature), and pH 7.0. White light promoted fruiting body growth and differentiation. Larch substrate exhibited superior yield (190 g) and biological efficiency (38.0%) compared to oak (131 g, 26.2%) and spruce (166 g, 33.2%). P. abieticola showcased high dietary fiber, protein, and total sugar content, low fat, and sufficient microelements. Transcriptome analysis revealed significant key genes involved in lignocellulose degradation, stress-resistant metabolism, and endocytosis metabolism, underscoring their pivotal for coniferous adaptation. This study offers valuable insights for the commercial development and strain breeding of P. abieticola, efficiently leveraging conifer resources. The findings underscore its potential as a valuable source for food, medicinal products, and biotechnological applications.</p

    Table2_Comparative transcriptomic insights into the domestication of Pleurotus abieticola for coniferous cultivation.XLSX

    No full text
    Introduction:Pleurotus abieticola, a promising edible fungus in the Pleurotaceae family, especially its ability to utilize coniferous substrate, holds significant potential for commercial cultivation. However, few reports on the adaptation of P. abieticola to coniferous substrate from the perspective of omics.Methods: This study explores the biological characteristics, domestication process, and nutritional composition of P. abieticola, along with its adaptability to coniferous substrates using transcriptomics. We assessed biological characteristics, optimizing mycelial growth on agar medium with varied carbon and nitrogen sources, temperature, and pH. Additionally, the optimization process extended to fruiting bodies, where impact on the differentiation were evaluated under varying light conditions. Fruiting body nutrient composition was analyzed per the Chinese National Food Safety Standard. Transcriptome sequencing focused on P. abieticola mycelial colonized coniferous and broadleaved substrates.Results and Discussion: The optimal conditions for mycelial growth were identified: dextrin (carbon source), diammonium hydrogen phosphate (nitrogen source), 25°C (temperature), and pH 7.0. White light promoted fruiting body growth and differentiation. Larch substrate exhibited superior yield (190 g) and biological efficiency (38.0%) compared to oak (131 g, 26.2%) and spruce (166 g, 33.2%). P. abieticola showcased high dietary fiber, protein, and total sugar content, low fat, and sufficient microelements. Transcriptome analysis revealed significant key genes involved in lignocellulose degradation, stress-resistant metabolism, and endocytosis metabolism, underscoring their pivotal for coniferous adaptation. This study offers valuable insights for the commercial development and strain breeding of P. abieticola, efficiently leveraging conifer resources. The findings underscore its potential as a valuable source for food, medicinal products, and biotechnological applications.</p

    Table5_Comparative transcriptomic insights into the domestication of Pleurotus abieticola for coniferous cultivation.XLSX

    No full text
    Introduction:Pleurotus abieticola, a promising edible fungus in the Pleurotaceae family, especially its ability to utilize coniferous substrate, holds significant potential for commercial cultivation. However, few reports on the adaptation of P. abieticola to coniferous substrate from the perspective of omics.Methods: This study explores the biological characteristics, domestication process, and nutritional composition of P. abieticola, along with its adaptability to coniferous substrates using transcriptomics. We assessed biological characteristics, optimizing mycelial growth on agar medium with varied carbon and nitrogen sources, temperature, and pH. Additionally, the optimization process extended to fruiting bodies, where impact on the differentiation were evaluated under varying light conditions. Fruiting body nutrient composition was analyzed per the Chinese National Food Safety Standard. Transcriptome sequencing focused on P. abieticola mycelial colonized coniferous and broadleaved substrates.Results and Discussion: The optimal conditions for mycelial growth were identified: dextrin (carbon source), diammonium hydrogen phosphate (nitrogen source), 25°C (temperature), and pH 7.0. White light promoted fruiting body growth and differentiation. Larch substrate exhibited superior yield (190 g) and biological efficiency (38.0%) compared to oak (131 g, 26.2%) and spruce (166 g, 33.2%). P. abieticola showcased high dietary fiber, protein, and total sugar content, low fat, and sufficient microelements. Transcriptome analysis revealed significant key genes involved in lignocellulose degradation, stress-resistant metabolism, and endocytosis metabolism, underscoring their pivotal for coniferous adaptation. This study offers valuable insights for the commercial development and strain breeding of P. abieticola, efficiently leveraging conifer resources. The findings underscore its potential as a valuable source for food, medicinal products, and biotechnological applications.</p

    Table4_Comparative transcriptomic insights into the domestication of Pleurotus abieticola for coniferous cultivation.XLSX

    No full text
    Introduction:Pleurotus abieticola, a promising edible fungus in the Pleurotaceae family, especially its ability to utilize coniferous substrate, holds significant potential for commercial cultivation. However, few reports on the adaptation of P. abieticola to coniferous substrate from the perspective of omics.Methods: This study explores the biological characteristics, domestication process, and nutritional composition of P. abieticola, along with its adaptability to coniferous substrates using transcriptomics. We assessed biological characteristics, optimizing mycelial growth on agar medium with varied carbon and nitrogen sources, temperature, and pH. Additionally, the optimization process extended to fruiting bodies, where impact on the differentiation were evaluated under varying light conditions. Fruiting body nutrient composition was analyzed per the Chinese National Food Safety Standard. Transcriptome sequencing focused on P. abieticola mycelial colonized coniferous and broadleaved substrates.Results and Discussion: The optimal conditions for mycelial growth were identified: dextrin (carbon source), diammonium hydrogen phosphate (nitrogen source), 25°C (temperature), and pH 7.0. White light promoted fruiting body growth and differentiation. Larch substrate exhibited superior yield (190 g) and biological efficiency (38.0%) compared to oak (131 g, 26.2%) and spruce (166 g, 33.2%). P. abieticola showcased high dietary fiber, protein, and total sugar content, low fat, and sufficient microelements. Transcriptome analysis revealed significant key genes involved in lignocellulose degradation, stress-resistant metabolism, and endocytosis metabolism, underscoring their pivotal for coniferous adaptation. This study offers valuable insights for the commercial development and strain breeding of P. abieticola, efficiently leveraging conifer resources. The findings underscore its potential as a valuable source for food, medicinal products, and biotechnological applications.</p

    Genome Sequencing of <i>Cladobotryum protrusum</i> Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease Pathogen on Cultivated Mushroom

    No full text
    Cladobotryum protrusum is one of the mycoparasites that cause cobweb disease on cultivated edible mushrooms. However, the molecular mechanisms of evolution and pathogenesis of C. protrusum on mushrooms are largely unknown. Here, we report a high-quality genome sequence of C. protrusum using the single-molecule, real-time sequencing platform of PacBio and perform a comparative analysis with closely related fungi in the family Hypocreaceae. The C. protrusum genome, the first complete genome to be sequenced in the genus Cladobotryum, is 39.09 Mb long, with an N50 of 4.97 Mb, encoding 11,003 proteins. The phylogenomic analysis confirmed its inclusion in Hypocreaceae, with its evolutionary divergence time estimated to be ~170.1 million years ago. The genome encodes a large and diverse set of genes involved in secreted peptidases, carbohydrate-active enzymes, cytochrome P450 enzymes, pathogen&#8315;host interactions, mycotoxins, and pigments. Moreover, C. protrusum harbors arrays of genes with the potential to produce bioactive secondary metabolites and stress response-related proteins that are significant for adaptation to hostile environments. Knowledge of the genome will foster a better understanding of the biology of C. protrusum and mycoparasitism in general, as well as help with the development of effective disease control strategies to minimize economic losses from cobweb disease in cultivated edible mushrooms

    Effect of different drying temperatures on the rehydration of the fruiting bodies of Yu Muer (Auricularia cornea ) and screening of browning inhibitors

    No full text
    In this study, the color of the dry fruiting bodies, fresh weight (FW): dry weight (DW) ratio, amino acids, and total phenolics, which are of nutritional or commercial interest, were compared among different drying temperature treatments. The effect of rehydration methods and color protection reagents on the fruiting body color, polyphenol oxidase (PPO) activity, and browning inhibition rate were evaluated. The results showed that drying with hot air at 65℃ was quickest and resulted in a better color without compromising the FW:DW ratio and rehydration ratio of the fruiting bodies. Furthermore, some reactions that occurred under high temperatures increased the content of protein, amino acids, and total phenolics. Soaking after boiling was the most suitable rehydration method, leading to the lowest PPO activity (39.87 ± 1.35 U/g). All of the four analyzed color protection reagents could significantly inhibit the browning of Yu Muer fruiting bodies under room temperature water rehydration conditions, with a citric acid content of 6 g/L showing the best performance. These results provide technical support for the development of the Yu Muer industry and for promoting the commercial processing of Yu Muer fruiting bodies slices

    Genetic and Pathogenic Variability of Mycogone perniciosa Isolates Causing Wet Bubble Disease on Agaricus bisporus in China

    No full text
    Wet bubble disease, caused by Mycogone perniciosa, is a major threat to Agaricus bisporus production in China. In order to understand the variability in genetic, pathogenicity, morphology, and symptom production of the fungus, 18 isolates of the pathogen were collected from diseased A. bisporus in different provinces in China. The isolates were characterized by a combination of morphological, cultural, molecular, and pathogenicity testing on different strains of A. bisporus and amplified fragment length polymorphism (AFLP) analysis. The 18 isolates were identified by Koch&rsquo;s postulate and confirmed different pathogenic variability among them. The yellow to brown isolates were more virulent than the white isolates. AFLP markers clustered the isolates into two distinct groups based on their colony color, with a high level of polymorphism of Jaccard similarities range from 0.39% to 0.64%. However, there was no evidence of an association between the genetic diversity and the geographical origin of the isolates. Through knowledge of the genetic diversity, phenotypic virulence of M. perniciosa is a key factor for successful breeding of resistant strains of A. bisporus and developing of an integrated disease management strategy to manage wet bubble disease of A. bisporus
    corecore