
Comparative genomic analysis of
pleurotus species reveals insights
into the evolution and coniferous
utilization of Pleurotus
placentodes

Lei Sun1,2†, Xiaolei Yin1,2†, Frederick Leo Sossah1,3, Xuerong Han1,2*
and Yu Li1,2*
1Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China,
2International Cooperation Research Center of China for New Germplasm Breeding of Edible
Mushrooms, Jilin Agricultural University, Changchun, China, 3Council for Scientific and Industrial
Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi, Ghana

Pleurotus placentodes (PPL) and Pleurotus cystidiosus (PCY) are economically
valuable species. PPL grows on conifers, while PCY grows on broad-leaved trees.
To reveal the genetic mechanism behind PPL’s adaptability to conifers, we
performed de novo genome sequencing and comparative analysis of PPL and
PCY. We determined the size of the genomes for PPL and PCY to be 36.12 and
42.74 Mb, respectively, and found that they contain 10,851 and 15,673 protein-
coding genes, accounting for 59.34% and 53.70% of their respective genome
sizes. Evolution analysis showed PPL was closely related to P. ostreatus with the
divergence time of 62.7 MYA, while PCY was distantly related to other Pleurotus
species with the divergence time of 111.7 MYA. Comparative analysis of
carbohydrate-active enzymes (CAZYmes) in PPL and PCY showed that the
increase number of CAZYmes related to pectin and cellulose degradation (e.g.,
AA9, PL1) in PPL may be important for the degradation and colonization of
conifers. In addition, geraniol degradation and peroxisome pathways identified
by comparative genomes should be another factors for PPL’s tolerance to conifer
substrate. Our research provides valuable genomes for Pleurotus species and
sheds light on the genetic mechanism of PPL’s conifer adaptability, which could
aid in breeding new Pleurotus varieties for coniferous utilization.
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1 Introduction

Coniferous trees are a primary source of forest resources, generating ten million tons of
conifer waste each year due to tree aging, cutting, and industrial waste. Unfortunately, most
of this waste is only used as fuel, resulting in low utilization and environmental pollution
(Rominiyi et al., 2017). Despite continuous research efforts to utilize these wastes by
extracting effective components of turpentine and controlling soybean cyst nematodes
(Silori et al., 2019), this approach still requires a significant amount of manpower and
material resources. Therefore, finding an effective way to utilize these conifer wastes and
promote waste reuse is crucial for environmental protection, sustainable development, and
increasing people’s income.
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Edible mushroom production is an important component of fully
utilizing agricultural and forestry waste (Croan, 2004; Wang et al.,
2021). China is the world’s largest producer of edible mushrooms,
accounting for approximately 75% of the world’s yield (Liu et al., 2018),
which translates to around 40 million tons of cultivation substrate
consumed annually. Although traditionally, the artificial cultivation
substrate of edible mushrooms has been based on broad-leaved wood
sawdust rich in lignocellulose, conifers are also rich in lignocellulose but
contain a large amount of turpentine acids and phenols. These
compounds destroy the integrity of the cell membrane and seriously
hinder the growth and development of ediblemushroommycelium and
fruiting bodies, which limits the use of conifers as a substrate for
producing edible mushrooms (Chen et al., 2002; Croan, 2004). In
addition, the composition of coniferous and broad-leaved trees are also
different and how these different compositions affect the growth of
mushrooms is also still unkonwn. If coniferous tree waste can also be
normally used for mushroom production, it will enormously save costs,
protecting the environment, and promoting the development of the
edible mushroom industry.

In 1852, the British mycologist Berkeley was first described PPL as
growing on decaying wood of Betula (Berkeley, 1852), which breaks the
idea that Pleurotus species are difficult to complete growth and
development on the conifer substrate. After 164 years, PPL was
discovered growing on Betula and Picea in the Subalpine Forests of
Tibet and Yunnan, China, at altitudes of 3,000–4,200 m (Liu et al.,
2016). It has since been successfully domesticated, cultivated, and
verified as a non-toxic, edible, and highly nutritious mushroom
(Wang et al., 2018), providing a positive strategy for the cyclic
utilization of conifer waste. However, how does PPL degrade
coniferous substrates composed of different types lignocellulose? As
the main enzymes for lignocellulose degradation, what is the difference
of CAZYmes composition between PPL and other species? What
measures are contains to deal with the antibacterial substances in
coniferous trees to ensure own growth? These questions have not
been answered in detail at present.

Currently, the NCBI hosts 11 publicly available genomes of
Pleurotus species, including P. ostreatus, P. cornucopiae, P. platypus,
P. citrinopileatus, P. floridanus, Pleurotus pulmonarius, P. tuoliensis,
P. salmoneostramineus, Pleurotus eryngii, P. ostreatoroseus, and P.
tuber-regium (https://www.ncbi.nlm.nih.gov/genome/?term=
pleurotus). Additionally, Fu et al. (2022) have sequenced 13 more
genomes of Pleurotus species, thereby expanding our understanding
of the genus. Among these 13 genomes, seven were sequenced for
the first time, and they belong to the following species: P. abieticola,
P. djamor, P. eryngii var. ferulae, P. giganteus, P. nebrodensis, P.
populinus, and P. sapidus. While many Pleurotus species are known
to grow on broad-leaved trees or Apiaceae plants, some can also be
found on conifers. Despite several studies available on the phylogeny
(Dai et al., 2019) stress response, growth and development (Xu et al.,
2021a; Zhang et al., 2022), substrate-biased gene regulation (Wu
et al., 2021), and lignocellulose-decay enzymes (Araújo et al., 2021)
of Pleurotus, there is still a lack of research on their adaptability to
conifers, which may be due to insufficient genomic data available for
the species that grow on conifer substrates.

In this study, we aimed to provide high-quality genome
assemblies of PPL and PCY, which are adapted to conifer and
broadleaf substrates, respectively. Our main objectives were to
compare the genomes of these two species and identify

differences in their evolution and structure. Additionally, we
aimed to determine the phylogenetic relationship between PPL
and PCY using nuclear single-copy orthologous genes, and to
investigate the molecular features of PPL’s adaptation to conifer
substrates at the genome level. These reference genomes and
comparative analyses will serve as important genetic resources for
understanding the substrate utilization, evolution, and ecology of the
Pleurotus genus.

2 Materials and methods

2.1 Experimental materials

The de novo genome sequencing were carried out with the
monokaryon strains of PPL and PCY preserved in the
Engineering Research Center of the Ministry of Education of Jilin
Agricultural University, China.

2.2 Genome extraction and sample
preparation

The dikaryon strains of PPL and PCYwere inoculated on the potato
dextrose agar (PDA) medium overlaid with cellophane sheets. The
cultures were grown in a light-free environment at 25°C for 10 days.
Afterward, 300 mg of hyphae was collected and transferred to
Eppendorf tubes, where they were subjected to enzymatic hydrolysis
using 2% lysozyme (Guangdong Institute of Microbiology, China) at
30°C for 4 h. Mononuclear hyphae were obtained by regenerating the
protoplasts and staining the nucleic acid with 4′,6-diamidino-2-
phenylindole (DAPI, Sigma-Aldrich, United States) before
identification under an optical microscope. The mononuclear
hyphae were then cultured on a PDA medium overlaid with
cellophane. The mononuclear hyphae were cultured in PDA
medium overlaid with cellophane for 25°C for 15 days, and 100 mg
hyphae was collected separately for each strain. Finally, the highly
efficient NuClean Plant Genomic DNA extraction kit (CWBIO, Beijing,
China) was used to extract the genomic DNA for each strains. Genomic
integrity, purity, and concentration were evaluated using 0.8% agarose
gel electrophoresis, Nanodrop 2000 (Thermo Fisher Scientific, Foster
City, CA, United States), and Qubit (Thermo Fisher Scientific, Foster
City, CA, United States), respectively.

2.3 De novo genome sequencing and
assembly of PPL and PCY strains

De novo genome sequencing of PPL and PCYwas performedwith a
20 k library size using a PacBio sequel platform in the Engineering
Research Center of the Ministry of Education of Jilin Agricultural
University, China (Wang et al., 2019a; Sossah et al., 2019). The subreads
were assembled using SMARTdenovo (https://github.com/ruanjue/
smartdenovo, version 1.0.0) (Liu et al., 2021). The Core Eukaryotic
Genes Mapping Approach (CEGMA) (Parra et al., 2007) and
Benchmarking Universal Single-Copy Orthologs (BUSCO)
(Waterhouse et al., 2018) were used to test the accuracy and
completeness of the assembled this two genomes. Both genome
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sequences have been submitted to Figshare database (https://figshare.
com/projects/Genome_sequencing_of_Pleurotus_placentodes_
and_Pleurotus_cystidiosus/165418).

2.4 Genome annotation of PPL and PCY

De novo and homologous prediction strategies were used to
annotate the two genomes of Pleurotus, including the wild strain
PPL from the Tibetan Plateau and the PCY strains. Four reference
species, including Agaricus bisporus, Coprinopsis cinerea, Pleurotus
ostreatus, and Schizophyllum commune were used for homologous
prediction. Augustus (version 3.3.2), Genescan (version 3.7),
GlimmerHMM (version 3.0.4), and SNAP software (semi-hmm-
based nucleic acid parser) were used for de novo prediction. Then,
GLEAN (http://sourceforge.net/projects/glean-gene) was used to
integrate the results obtained by the two methods. The integrated
results were used for subsequent analysis: 1) For functional annotation,
diamond software with e value < 1e-5 was used to search genes against
Nr (Non-Redundant Protein Sequence Database), KOG (Clusters of
Orthologous Groups), Interpro, and SwissProt databases. Interproscan
software with parameters--applications Pfam - Gene Ontology (GO)
terms was used for GO annotation, and Kobas (KEGG orthology based
annotation system) software with parameters default was used for
KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation. 2)
For repeat components annotation, the assembled genome was
compared with the Repbase database using Repetmasker (version 3.
3.0; http://www.repeatmasker.org/) to determine the transposon
sequence; the tandem repeats were predicted using TRF (http://
tandm.bu.edu/trf/trf.html, version 4.04) software, including
microsatellites, etc.,; 3) For non-coding RNA annotation, tRNAscan-
SE software was used for annotation of transfer RNA (tRNA);
rRNAmmer software (version 1.2) were used homology prediction
and de novo prediction of Ribosomal (rRNA); non-coding RNAs such
as small nuclear RNA (snRNA) and micro RNA (miRNA) were
annotated by the Rfam database (version 14.0; http://rfam.xfam.org/).

2.5 CAZYmes annotation of PPL and PCY

Carbohydrate-active enzymes (CAZYmes) in the PPL and PCY
genomes were annotated using profile hidden markov models
(HMMs, version 2.3.2) by searching against the CAZY database
(http://www.cazy.org/). The input data consisted of proteomes of
PPL and PCY. A threshold was set for the search results, such that if
the alignment length was greater than or equal to 120 amino acids,
the E-value had to be less than 1e-5.

2.6 Evolution analysis based on nuclear
single-copy orthologous genes of PPL
and PCY

To analyze the evolution of PPL and PCY among 12 different
species, including P. tuoliensis (PT), P. eryngii var. ferulae (PC), P.
eryngii var. eryngii (PE), P. ostreatus (PO), P. florida (PF),
Coprinopsis cinerea (CC), Laccaria bicolor (LB), Schizophyllum
commune (SC), Serpula lacrymans (SL), Coniophora puteana

(CP). Orthomcl software (version 1.4) was used to cluster gene
families and obtain single-copy orthologues (Li et al., 2003). Mafft
software (version 7) was used to align all the protein sequences
(Katoh and Standley, 2013). RAxML software (random axelerated
maximum likelikhood, version 8) was used to construct the
phylogenetic relationship of the 12 species using maximum
likelihood with 1000 bootstrap runs (Stamatakis, 2014). The
mcmctree program in PAML (phylogenetic analysis by maximum
likelihood, version 4.4) was used to estimate the divergence time
among the 12 species based on the aforementioned phylogenetic tree
with three fossil calibrations, CP and SL (70.0–129.4 Mya), LB and
CC (59.3–108.4 Mya), and the node formed by the four species
(109.9–176.7 Mya) (Jiang et al., 2022).

2.7 Whole-genome collinearity analysis of
PPL and PCY

Whole genome collinearity analysis of PPL and PCY was
performed by the MCScan (JCVI package) (Tang et al., 2008).
Firstly, the all-against-all blastp method was used to detect
paralogous and orthologous genes from the protein data of PPL
and PCY. Then homologous blocks were detected by MCScan with
the parameter cscore = 0.99. Finally, the relationship of collinearity
between the two genomes was obtained, and subsequent mapping
was performed.

2.8 Gene family analysis of PPL and PCY

Gene families were identified using an all-against-all blastp method
and clusteredwith theOrthoMCL software (version 1.4) (Li et al., 2003).
Expansion or contraction of gene families in each species was
investigated using the Cafe software (version 4.2.1) (Bie et al., 2006)
with the parameter of -p 0.05. For each gene family, the branch locus
model in PAML’s codeml tool (version 4.4; http://abacus.gene.ucl.ac.uk/
software/paml.html) was used for positive analysis. KEGG annotation
of gene families were conducted by aligning the genes to KEGG
database. Blast2GO was used to identify the associated GO terms.

3 Results

3.1 Genome sequencing and assembly of
PPL and PCY

To obtain high-quality genome assemblies for PPL and PCY,
we used monokaryon strains obtained through protoplast
mononuclearization. We generated 6.7 Gb (186 x) and 4.8 Gb
(113 x) of data using the PacBio Sequel platform for PPL and
PCY, respectively. The assembly genome size of PPL and PCY was
36.12 and 42.74 Mb, and the contig was all 21. Our assembly also
represents good contig N50 length, 3.7 M, and 3.3 M, respectively
(Figure 1). CEGMA and BUSCO analysis showed that 96.20% and
98.39% of the core eukaryotic genes and 97.18% and 94.50%
single-copy genes were obtained, indicating high quality and
integrity for genome assembly of the two species, which
provide guarantees to the accuracy of subsequent research.
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3.2 Genome annotation of PPL and PCY

To more accurately predict PPL and PCY protein-coding genes,
we performed homologous annotation and denovo annotation. The
result showed that PPL and PCY genomes include 10,851 and
15,673 protein-coding genes, accounting for 59.34% and 53.70%
of the genome size, respectively (Figure 2B). The predicted average
length of protein-coding genes was 1, 975.68 bp and 1, 464.48 bp,
5.93 and 4.27 exons per gene on average, respectively. The average
exons length was 251.11 and 260.10 bp, and the average intron
length was 99.03 and 107.95 bp. We further annotated these genes

by Nr, InterPro, GO, KEGG, Swiss-prot, KOG databases. Among
them, 10,445 (96.26%), 6,027 (55.54%), 2,544 (23.44%), 5,652
(52.09%), 5,862 (54.02%), 4,025 (37.09%) were annotated in PPL
and 11,617 (74.12%), 6,625 (42.27%), 2,849 (18.18%), 6,564
(41.88%), 6,286 (40.11%), 4,237 (27.03%) were annotated in PCY
(Figure 2A, Supplementary Table S1). It is noticed that the gene
terms annotated by PPL in six functional databases were all
significantly less than PCY, indicating PPL genome experienced
significant gene contraction during evolution. In addition, both PPL
and PCY contain their own unique functional genes, accounting for
18%–34% and 22%–62% of the annotated genes in different

FIGURE 1
The genome of PPL and PCY. (A) The genome information of PPL. (B) The genome information of PCY. Outside to inside of concentric circles show
assembly contig number and GC content, gene density, all repeat content, LTR content, LINE content, DNA repeat content. (C)Genome assembly result
of PPL and PCY.
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databases, respectively. Particularly, the percentage of unique genes
annotated in GO and KEGG databases is the highest, indicating PPL
and PCY have undergone significant gene differentiation during the
evolutionary process.

We identified ~4.3 M and 6.7 M repeat sequences in PPL and
PCY, which accounted for 12.02% and 15.76% of their respective
genome sizes (Figure 2B). Among them, tandem repeats (TRF)
sequence length is 0.41 M (1.14%) and 0.37 M (0.86%), transposable
element (TEs) sequence length was 4.1 M (11.26%) and 6.4 M
(14.89%). Among the different TE types, long terminal repeats
(LTRs) were most abundant (2.1 and 5.3 Mb), accounting for
5.71% and 12.39% of the genome size, followed by DNA
transposons (0.4 and 0.6 Mb), long interspersed nuclear elements
(LINEs) (0.24% and 0.16%), and short interspersed elements
(SINEs) (0.004% and 0.02%) (Supplementary Table S2).

We also identified non-coding RNA in PPL and PCY. A total of
173 tRNAs and 58 rRNAs were identified in PPL, while 165 tRNAs
and 102 rRNAs were identified in PCY. In addition, 7 and 12 tRNA

pseudogenes were predicted in PPL and PCY, respectively. We also
predicted 56 miRNA and 14 snRNAs containing 9 splicing RNAs
and 5 C/D nucleolar small RNAs in PPL, and 17 miRNA and
14 snRNAs containing 10 splicing RNAs and 4 C/D nucleolar
small RNAs in PCY (Supplementary Table S3).

3.3 CAZYmes analysis of PPL and PCY
adapted to different substrate

To study the difference in composition of enzymes mainly
related to lignocellulose degradation, we conduct comparative
CAZYmes analysis of PPL and PCY. A total of 434 and
439 CAZYmes genes were annotated in PPL and PCY genome
using hmmer software, respectively (Figure 3). Glycoside
Hydrolases (GHs) was the most annotated CAZYmes gene
family in these two Pleurotus species, accound for 184 (42.4%)
and 190 (43.3%) of these two species, followed with the Auxiliary

FIGURE 2
Genome annotation result of PPL and PCY. (A) Function annotation of PPL and PCY. Yellow columns represent the same function, green columns
represent unique functions in PCY, and brown columns represent unique functions in PPL. (B) Genome components of PPL and PCY.
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Activities (AAs) and Carbohydrate-Binding Modules (CBMs),
annotated to 97 (22.4%) and 88 (20.3%) in the PPL, and 106
(24.1%) and 81 (18.5%) in PCY. The number of genes annotated
in GlycosylTransferases (GTs), Carbohydrate Esterases (CEs)
and Polysaccharide Lyases (PLs) was relatively small,
annotated to 38 (8.8%), 10 (2.3%) and 17 (3.9%) in PPL and
36 (8.2%), 13 (3.0%) and 13 (3.0%) in PCY. Further comparison
with the PCY found that, AA9, CBM13, CE16, GH30, GH31,
GH47, GH7, GH71, and PL1 were significantly increased, and
CBM21, CBM48, GT30, GT31, and GT50 were unique CAZYmes
genes in PPL. PCY contains more AA1, GH10, GH11,
GH15 CAZYmes and CBM14, CE8, GH105, GH135, and
GT2 were unique CAZYmes gene family. We identified
differences in the number of specific pectin lyase gene
modules and genes in the genomes of PPL and PCY. Both
fungi have four gene modules for pectin lyase, including PL1,
PL3, PL4, and PL14. While PL4 and PL14 contain the same
number of genes in both fungi, PPL has a greater number of genes
for PL1 and PL3 compared to PCY. Specifically, PPL has a total of
8 copies of the PL1 gene and 3 copies of the PL3 gene, while PCY
has 5 copies of the PL1 gene and 2 copies of the PL3 gene.

3.3.1 Cellulose and hemicellulose
Although the main components of hemicellulose are xylan

and mannan, the composition of hemicellulose in coniferous

wood is quite different from that in broad-leaved wood. Firstly,
coniferous tree xylan do not contain acetyl groups, but have
arabinose branched chains that require corresponding
debranching enzymes for degradation. A total of 91 GHs (PPL
45 and PCY 46) with related functions were annotated in PPL and
PCY, namely, GH1, GH5, GH30, GH43, and GH51. Among
them, no difference occured in the number of GH1 enzymes.
GH3, GH30, and GH51 in PPL contain α-L-arabinofuranosidase
(EC 3.2.1.55) and glucuronoarabinoxylan endo-β-1,4-xylanase
activities, while GH5 and GH43 in PCY contain
L-arabiofuranosidase activities, which indicating PCY also has
the ability to degrade hemicellulose of coniferous wood, and
hemicellulose degrading enzyme is not the main reason for
determining whether fungi can grow on coniferous substrate.
Secondly, in general, in addition to glucose and mannose,
mannan in coniferous trees also contains acetyl- and galactose
branched chains, which are absense in broad-leaved trees.
Compared to PCY, GH31 (α- The number of
N-acetylgalactosaminidase (EC 3.2.1.217) in PPL is 2.5 times
than PCY. In addition, CBM1, CBM5, CBM13, CBM35, and
CBM43 all have the ability to bind and assist in the degradation of
cellulose or hemicellulose. PPL contains 75 genes, and PCY
contains 69 genes, indicating PPL has more advantages in the
co-enzyme of cellulose degradation. The number of GTs is
relatively large in PPL, especially three unique enzymes related

FIGURE 3
Comparison of CAZYmes annotated by PPL and PCY. From left to right, show GHs, GTs, CBMs, AAs, CEs, and PLs. White numbers represent the
number of annotated genes. The chromaticity bar at the bottom represents the gene number of different colors, corresponding to the figure above.
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to mannose transfer, GT30, GT31, and GT50, which assist in the
degradation of mannan. No quality difference in AA7 and
AA8 related to cellulose degradation, while AA1, AA2, AA3,
and AA9 with differences are Laccase, Manganese peroxide,
cellobiose dehydrogenase, and lytic polysaccharide
monooxygenases, all of which are related to lignin
degradation. In conclusion, although the number of cellulose
and hemicellulose degradation related enzymes in PCY and PPL
is similar, the number of co-enzymes in PPL is significantly more
than that in PCY. Therefore, PPL has the ability to degrade
cellulose and hemicellulose faster.

3.3.2 Pectin
Plant pectin is mainly composed of Homogalactiuronan and

Rhamnogalactiuronan. A total of 50 enzymes (PPL 27 and PCY 23)
related to the degradation of these two substances were annotated,
namely, GH28, GH78, CBM67, CE8, CE12, PL1, PL3, and PL4,
which indicating PPL has a higher pectin degradation ability than
PPL. Among the 50 enzymes, the number of PL4 genes is consistent
in PPL and PCY, CE8 is a unique pectin methylesterase in PCY, and
the remaining enzymes are more abundant in PPL than in PCY.
Homogalacturonan is a polymer which was composed of
galacturonic acid residues connected by α- 1,4-linked. GH28 is
endopolygalacturonases, which can cleave the α-1,4-linkage.
PL1 and PL3 are two pectate lyase, which can degrade the α-1,4-
linkage between galacturonic acid residues at the non-reducing end
of homogalacturonan. In terms of rhamnogalacturonan
degradation, the main enzymes involved include GH78, CBM67,
CE8, and CE12. Among them, GH78 isα-L-rhamnosidase enzymes,
which can act on the terminal non reducing end of the
rhamnogalacturonan backbone. CBM 67 can bind L-rhamnose
and enhance the degradation rate of rhamnose. CE12 and
CE8 are pectin acetyl esterases and pectin methylesterase, which
target the backbone of rand homogalacturonan, respectively.

3.3.3 Lignin
Lignin is an important component of plant cell walls, which

content is higher in coniferous trees than broad-leaved trees.
Therefore, laccase, manganese peroxidase and lignin peroxidase,
which are mainly related to lignin degradation, have also been
annotated. A total of 70 enzymes related to lignin degradation
were annotated, including 40 in PPL and 30 in PCY. The
quantity in PCY is much higher than that in PPL, indicating
PCY has stronger lignin degradation ability, and also reflected
enzymes related to lignin degradation are not the main reason
why PPL adapts to coniferous tree substrates.

3.4 Molecular evolution of PPL and PCY

To analysis the evolution and differentiation of PPL and PCY,
we performed phylogenetic analysis based on nuclear single-copy
orthologous genes of PPL, PCY and 10 other reported strains,
contains P. tuoliensis (PT), Pleurotus eryngii var. ferulae (PC), P.
eryngii var. eryngii (PE), P. ostreatus (PO), P. florida (PF),
Coprinopsis cinerea (CC), Laccaria bicolor (LB), Schizophyllum
commune (SC), Serpula lacrymans (SL), Coniophora puteana
(CP) (Table 1). We used maximum likelihood method to

construct a phylogenetic tree with CP and SL as outgroup. We
obtained 1,869 nuclear single-copy orthologous genes and used
them to construct the phylogenetic tree after sequence aligment.
Based on the phylogenetic tree, PCY adapted to broad-leaved tree
substrate was the earlist to differentiate with the divergence time
111 million years ago (MYA), followed by PPL adapted to conifers
substrate with the divergence time 62.7 MYA (Figure 5A). Other
species PE, PC, PT adapted to Apiaceae plants and PO, PF adapted
to broad-leaved substrate with the divergence time less than
29.9 MYA. From 111 to 66.7 million years, the period was in the
Cretaceous period, during which the temperature rises and the
vegetation was luxuriant, which was suitable for the high growth
temperature type of PCY. Therefore, we speculate the climatic
conditions promote the differentiation of PCY. Differently, PPL
was mostly collected from subalpine areas, and its differentiation
may be related to orogeny in the late Cretaceous. In addition,
gymnosperms originated in the late Devonian period, at least
350 million years ago. There was no significant correlation
between the occurrence time of known Pleurotus mushrooms
and conifers or broad-leaved trees in history.

3.5 Whole-genome collinearity analysis of
PPL and PCY

To investigate the degradation ability of different substrates of
the Pleurotus from the genomic level, we conducted a collinearity
analysis of the genomes of the PCY adapted to the broad-leaved
tree and the PPL adapted to the coniferous tree (Figure 4). The
results showed that the alignment rate of homologous fragments
between each contig of PPL and PCY strains was relatively high, in
which the contig36, contig28, contig56, contig72, contig214,
contig83, contig49, and contig55 were basically consistent with
the gene sequence arrangement on their corresponding contigs in
PCY. And a number of contigs showing inversions, such as
contig51 in PPL and contig1 in PCY, contig 60 in PPL and
contig6 in PCY, contig 25 in PPL and contig2, contig9 in PCY.
In addition, five shorter, one-gene-only and unmatched contig
both in PPL and PCY.

Further sequence analysis revealed mitochondrial genome
sequences in utg18 and contig76 of PPL and PCY, respectively.
Among the remaining contigs, several in the PPL genome
contained putative flavin, cytochrome C oxidase subunit 2,
and cytochrome P450 genes, but no genes were annotated in
PCY. These segments had a relatively high GC content and high
repetitive sequences.

We also annotated 1,055 genes in contig1 of PCY and
1,648 genes in utg51 of PPL (Supplementary Table S4), and
found that the types of metabolic pathways were similar in both
species. However, there were significant differences in the number of
genes in some pathways of common metabolic pathway. PPL had a
large number of stress-related genes in pathways related to
chemokine signaling, geraniol degradation, ABC transporters,
degradation of aromatic compounds, fatty acid metabolism,
naphthalene degradation, and starch and sucrose metabolism. We
also found significant expansion of 1,337 genes in utg25 and
1,756 genes in contig2 and contig9 of PPL and PCY, respectively
(Supplementary Table S5).
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3.6 Comparative genomic analysis of PPL
and PCY

3.6.1 Gene family cluster
We selected PPL, PCY, and 10 other species for gene family

clustering, which revealed that the 12 species shared 3,052 gene
families, with PPL and PCY having 61 and 306 unique gene
families, respectively (Figure 5B). The PPL-specific gene
families mainly related to immune and signaling pathways,
such as PI3K-Akt signaling pathway, chemokine signaling
pathway, and MAPK signaling pathway. The PCY-specific
gene families mainly related to DNA replication, pyrimidine
metabolism, purine metabolism, sesquiterpenoid and
triterpenoid biosynthesis. We also identified gene families
associated with pigment synthesis also have been identified,
such as tyrosine and tryptophan metabolism, and glutathione
metabolism.

3.6.2 Expansion and contraction of gene family
To identify the evolutionary dynamics of the gene family, we

used the CAFE software to analyze gene family expansion, and a
p-value < 0.05 was considered to be significantly expanded or
contracted. We found that 604 gene families had evolved to
expand in PPL, with 18 significantly expanded gene families.
Among the PCY, 1039 gene families had evolved to expand, with
16 significantly expanded gene families (Figure 5A). KEGG and
GO analysis showed that the PPL expansion gene family was
significantly enriched in metabolic pathways such as fatty acid
biosynthesis, chemokine signaling pathway, Fc gamma
R-mediated phagocytosis, aminoacyl-tRNA biosynthesis,
glycine, serine and threonine metabolism, while the function
of these family genes was closely related to the stress resistance
process (Figure 5D). Lysine degradation and
phosphatidylinositol signaling system metabolic pathway
related genes were significantly enriched in the expanded gene

TABLE 1 List of genomes used in current study.

Abbreviation Scientific name Sequence type Resource

PPL P. placentodes Protein This study

PCY P. cystidiosus Protein This study

PT P. tuoliensis Protein NCBI

PC P. eryngii var. ferulae Protein Dai et al. (2019)

PE P. eryngii var. eryngii Protein MushDB

PO P. ostreatus Protein MushDB

PF P. florida Protein MushDB

CC C. cinerea Protein NCBI

LB L. bicolor Protein NCBI

CP C. puteana Protein NCBI

SL S. lacryman Protein NCBI

SC S. commune Protein NCBI

FIGURE 4
Genome collinearity analysis of PPL and PCY. Note: The contig/utg number is not continuous due to subsequent assembly optimization.
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family of PCY. Furthermore, we identified 2,634 contracted gene
families in PPL, of which only 3 were found to be significantly
contracted. Similarly, we found 3,467 contracted gene families in
PCY, but only 1 was significantly contracted.

3.6.3 Positively selected genes identification
We used the branch-site model calculation and likelihood

ratio test (p < 0.05) to identify 264 and 496 positively selected
genes in PPL and PCY, respectively. GO and KEGG analysis
showed that the positively selected genes were significantly
enriched in peroxisome, signaling pathway, AMPK signaling
pathway, MAPK signaling pathway, protein processing in
endoplasmic reticulum and other metabolic pathways in PPL
(Figure 5C). On the other hand, the genes involved in PCY were
significantly enriched in riboflavin metabolism, fructose and
mannose metabolism, glycolysis/gluconeogenesis and other
metabolic pathways. Furthermore, we identified metabolic
pathways related to antibiotic synthesis, such as neomycin,
kanamycin and gentamicin biosynthesis, carbapenem
biosynthesis, streptomycin biosynthesis, in the PCY genome.

4 Discussion

Pleurotus species are widely distributed throughout the world
and are highly valued for their economic and culinary uses. While
18 strains of Pleurotus genomes have been published in NCBI and
MushDB databases (Fu et al., 2022), the genomes of PPL and PCY
have not been reported until this study. PPL is a rare species of
Pleurotus that was collected from Picea, a coniferous substrate found
in Subalpine Forests. This suggests that PPL has the potential to
thrive on similar substrates. Given the growing issue of
environmental damage caused by large amounts of conifer waste,
the use of PPL as an edible mushroom resource could be particularly
valuable. PPL’s ability to utilize coniferous substrates effectively
could help address this issue by providing a sustainable means of
utilizing such waste. Therefore, the discovery of PPL’s potential as an
edible mushroom resource has practical applications beyond its
scientific significance. In this research, two high-quality reference
genomes for Pleurotus were assembled and annotated with genome
sizes of 36.12 and 42.74 Mb, adapted to broad-leaved tree and
conifer substrates, respectively. This study has enriched the

FIGURE 5
Comparative genome analysis of PPL and PCY. (A) Expansion and contraction of gene families in 12 species genomes. The numbers of gene families
that expanded (blue) or contracted (red) in each lineage after classification are down on the corresponding branch. MRCA, the most recent common
ancestor. The time shown in the bars represents the estimated divergence time. (B) Analysis of common unique gene families. The different color
represent different orthologs. (C) KEGG enrichment of positively selected genes in PPL. (D) KEGG enrichment of expansion genes in PPL. The
bottom color bar represents different KEGG pathway classifications.

Frontiers in Molecular Biosciences frontiersin.org09

Sun et al. 10.3389/fmolb.2023.1292556

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1292556


genetic information of Pleurotus species, providing insight into the
evolution and conifer utilization.

The phylogenetic relationship of P. ostreatus species complex
has always been a controversial issue due to its phenotype being
greatly influenced by the environment. Compared to the traditional
use of ITS, RPB2 and other fragments, phylogenetic analysis of
Pleurotus was conducted from a genomic perspective in this study,
which has the advantages of more comprehensive and accurate
information. Our phylogenetic analysis revealed that PPL is more
closely related to P. ostreatus, while PCY is relatively distantly related
to other Pleurotus species. This is consistent with the results
obtained using the ITS bar code by Liu et al. (2016).
Furthermore, we predicted the differentiation time of PCY and
PPL, and found that the differentiation time of these two species was
111 and 62.7 MYA, respectively. Species differentiation are general
influenced by climate conditions, geographical isolation, and
substrate. However, fossil records indicate the existence of the
Pinaceae in the Early Jurassic, and the Betulaceae, Fagaceae, and
Salicaceae in the Middle Cretaceous (Lin et al., 2010; Li et al., 2020),
while the PPL differentiated from the Cretaceous and grew in mixed
broadleaf-conifer forest. Additionally, a monoterpene found in
coniferous plants with bactericidal effects (Li et al., 2017),
suggests the potential ability of PPL and PCY to degrade
coniferous substrates. ABC transporter also has been identified as
a key element against host defenses in other fungi, such as
Phlebiopsis gigantea (Hori et al., 2014). Moreover, PPL’s ability to
grow in subalpine areas with high altitudes suggests the involvement
of fatty acid metabolism, which has been previously linked to plateau
adaptation in the Himalayan marmot genome (Bai et al., 2019). It is
worth noting that PPL mainly collected from subalpine regions, and
62.7MYAwas in the late Cretaceous orogenic period. These findings
suggest that climate conditions and geographical isolationmaybe the
main factors to induced its differentiation. Our study also identified
PPL and PCY as two valuable resources for exploring the genetic
mechanisms underlying substrate adaptation in Pleurotus
mushrooms. We found that both species have undergone
significant gene family expansions, with PPL showing a greater
degree of expansion on coniferous substrates and PCY exhibiting
more expansion on broadleaf substrates. Additionally, our whole-
genome collinearity analysis suggests that adaptive evolution has
occurred at the genome level in both PPL and PCY.

The plant cell wall is mainly composed of lignin, cellulose,
hemicellulose and pectin, which require specific enzymes
(CAZYmes) for degradation. Coniferous substrates have more
lignin than broad-leaved tree substrates, which makes the role of
glycoside hydrolase in lignocellulose degradation limited (Zhang
et al., 2006). However, the synergy of lytic polysaccharide
monooxygenase (LPMO) and glycoside hydrolase (GHs) can
improve lignocellulose degradation (Harris et al., 2010; Li et al.,
2022). The study identified a higher number of genes related to
lignocellulose degradation in conifers, such as AA9 (LPMO), GH30
(glucuronoarabinoxylan endo-β-1,4-xylanase) and GH31 (β-
glucosidase), GH47 (α-mannosidase), GH7 (cellobiohydrolase),
and GH71 (glucanase), which may be attributed to the high
lignin content present in these trees. However, the number of
enzyme genes related to lignin degradation in PPL is significantly
less than that in PCY, indicating lignin degradation is not the main
reason for PPL’s adaptation to coniferous substrate. It is worth

notingg that the number of cellulose and hemicellulose degradation
related enzymes in PCY and PPL is similar, but PPL contains more
co-enzymes, indicating PPL has the ability to degrade cellulose and
hemicellulose faster. Similarly, the degradation of coniferous
substrates is also been reported facilitated by the crucial roles
played by β-glucosidase and cellobiohydrolase in their early
decomposition, as established by studies on penicillium and
endophytic fungi (Yuan and Chen, 2014; Rai et al., 2016).

Pectin is one of the main components to make up plant cells,
which was composed of homogalactiuronan and
rhamnogalactiuronan. In cell wall degradation, pectin
degradation is earlier than cellulose and hemicellulose, and
cellulose and hemicellulose directional hydrolase genes with the
highest transcriptional abundance level come from GH1, GH3,
GH5, GH7, GH12 and GH30 CAZyme families (Blackman et al.,
2015). In this study, the high levels of pectin degrading enzymes in
PPL, such as PL1, PL3, CE12, may facilitate the degradation of
coniferous substrates (Atanasova et al., 2018), which could promote
effective colonization. In addition, we also noted that CE8 is missing
in PPL. CE8 is a kind of pectin methylesterases, mediating the
removal of methyl esters from homogalacturonan process and
releases methanol, which can be used as a signal molecule to
cause the response of plants stress resistance, further changing
the activity of pectin degrading enzymes such as
polygalacturonase. The lack of CE8 in PPL may reduce plant
stress resistance and increase survivability (Yang et al., 2013). To
sum up, the number of pectinase and cellulase annotated from a
genomic perspective was significantly higher in PPL than PCY,
confirming our hypothesis that one of the factor for PPL adapts to
coniferous tree maybe by rapidly plant cell walls degradation.

Conifers are rich in galactoglucomannan, a complex
polysaccharide composed of mannosyl (Terrett et al., 2019)
and glucosyl residues (Hannuksela and Hervé du Penhoat,
2004). PPL expresses specific genes, namely, GT50
(mannosyltransferase) and CE16 (acetylesterase), which are
essential in breaking down coniferous galactoglucomannan.
The unique enzymes GT30, GT31, and GT50 in PPL that are
associated with mannose transfer all assist in the degradation of
mannan. In addition, the GT family is closely associated with
microbial extracellular polysaccharide synthesis (Wang et al.,
2003; Rollefson et al., 2011; Xu et al., 2021b), which may play a
crucial role in colonizing and interacting with hosts
(Chandrasekar et al., 2022). With more annotated GT genes
and specific glycosyltransferases, PPL has a stronger
extracellular polysaccharide synthesis capacity, making it
potentially adept at colonizing conifer substrates. The study
also identified auxiliary enzymes, such as CBM13 and CBM21,
which can enhance the cellulase degradation ability.

The ability of PPL to tolerate coniferous substrate can be
attributed to its immune anti-fungal effect, as demonstrated in
previous research (Chen et al., 2002). When comparing PPL to
PCY, it was found that PPL had significant expansions in immunity
and signal pathways, such as geraniol degradation and fatty acid
biosynthesis, through gene family analysis. Geraniol, a terpenoid
found in coniferous plants, has been shown to have strong
bactericidal effects on various pathogens, including Drechslera
oryzae, at concentrations as low as 0.2 μL/mL (Li et al., 2017;
Kaur et al., 2019; Scariot et al., 2021). The expansion of geraniol
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degradation metabolism in PPL may be one of the main factors
contributing to its adaptability to conifer substrates.

Furthermore, the tolerance of fungi is largely achieved by
controlling growth and development and maintaining cell
membrane stability (Gu and Wei, 2010; Xie et al., 2011). In this
study, MAPK signal pathway, AMPK signal pathway, peroxisome,
and fatty acid biosynthesis were identified and were proven to
regulate cellulase genes (Zhang, 2015), plant-pathogen
interactions (Kubo, 2013), pesticide tolerance (Chen, 2001),
pathogenicity (Wang et al., 2022), morphogenesis (Yao et al.,
2019), and environmental adaptability (Tasseva et al., 2004; Fu
et al., 2016), potentially being closely related to this function.
Other stress resistance-related metabolisms were also identified,
including chemokine signaling pathway, ABC transporters, Fc
gamma R-mediated stress, aminoacyl tRNA biosynthesis, glycine,
serine, and threonine metabolism. These have been shown to be
related to microbial infection (Chensue, 2001), monoterpene
resistance (Wang et al., 2013; Kligun et al., 2017), and exogenous
oxidative stress (Qi et al., 2019).

Compared to PCY, PPL has fewer metabolic pathways related to
terpene, pigment, and antibiotic synthesis. However, some
important terpenoid biosynthesis pathways, such as diterpenoid
biosynthesis and sesquiterpenoid and triterpenoid biosynthesis,
are present in PPL. Terpenes are primarily synthesized through
sesquiterpenoid and triterpenoid biosynthesis, with isopentenyl
diphosphate (IPP) serving as a common precursor that can form
various terpenoid precursors via isopentenyl transferase. Terpene
synthase then catalyzes the formation of different terpenoid
skeletons, such as monoterpenes, sesquiterpenes, diterpenes,
dipsesquiterpenes, and triterpenes (Wang et al., 2019b). The
annotated pathways related to terpenoid biosynthesis in PPL
provide a genetic foundation for the synthesis of terpenoids in
this species at the genomic level.

The metabolism of fungal pigments, such as L-dopa and DHA, is
an important area of research, and tyrosine metabolism has been
identified as closely related to the formation of fungal melanin.
Tyrosinase is a crucial enzyme in the L-dopa pathway of Agaricus
bisporus, and tyrosine forms DOPA under the action of tyrosinase. It
then reacts with polyphenoloxidase and other enzymes to form
melanin (Weijn et al., 2013). Although there are fewer tyrosine
metabolism-related genes in PPL compared to PCY, it is possible
that the dark color of PPL’s fruiting body is related to the
metabolism of tyrosine.

In addition to the selection of metabolic pathways related to
growth and development, PPL has fewer metabolic pathways related
to antibiotic synthesis than PCY. However, PPL still has the
potential to produce natural antibiotics, such as cephalosporin
biosynthesis and beta-lactam biosynthesis. These pathways
indicate that PPL has medicinal value and may have evolved
adaptive strategies to ensure survival in its specific environment.
Overall, PPL and PCY have evolved adaptively to different
substrates, and genes related to stress resistance, substrate
utilization, growth, and development have been positively
selected to ensure their survival in diverse environments.
However, it is undeniable that the current work has only
conducted mining and analysis at the genomic level, and we will
further conduct cultivation and expression levels validation in
subsequent work.

5 Conclusion

Exploring the adaptability of species to coniferous substrate is
an important prerequisite for the development and utilization of
coniferous waste resources. In this study, we provided two
genomes of Pleurotus that adapt to coniferous (PPL) and
broad-leaved substrate (PCY), and carried out phylogenetic
and coniferous adaptability studies respectively. Species
evolution studies reflect PPL and PCY have undergone
significant differentiation in the genome. PPL is closer to the
traditional Pleurotus species and differentiates from 62.7 MYA,
which is 49 MYA later than PCY (111.7 MYA). Comparative
CAZYmes between PPL and PCY indicate PPL has an advantage
in the quantity of enzymes related to cellulose and pectin
degradation, despite coniferous substrate contains higher
lignin content than broad-leaved substrate, which may
providing favorable advantage for faster coniferous substrate
colonization. In addition, comparative genomic analysis
identified geraniol degradation and peroxisome pathway
should play an important role for PPL’s tolerance to conifer
substrates in stress resistance. These findings provide valuable
genetic resources for understanding the evolution and coniferous
adaptation of Pleurotus species from the genomic level, and lay
the foundation for developing new varieties of coniferous
substrate utilization.
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