14 research outputs found

    Characterization of skeletal muscle effects associated with daptomycin in rats

    Full text link
    Daptomycin is a lipopeptide antibiotic with strong bactericidal effects against Gram-positive bacteria and minor side effects on skeletal muscles. The type and magnitude of the early effect of daptomycin on skeletal muscles of rats was quantified by histopathology, examination of contractile properties, Evans Blue Dye uptake, and effect on the patch repair process. A single dose of daptomycin of up to 200 mg/kg had no effect on muscle fibers. A dose of 150 mg/kg of daptomycin, twice per day for 3 days, produced a small number of myofibers (≀0.22%) with loss of plasma membrane integrity and/or infiltration by neutrophils and/or macrophages. Multiple doses of daptomycin are required for a quantifiable effect on skeletal muscles of rats. Some fibers were Evans Blue Dye–positive but were not yet infiltrated by neutrophils. This suggests that the sarcolemma may be the primary target for the observed effects. Muscle Nerve, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77978/1/21691_ftp.pd

    Safety out of control: dopamine and defence

    Full text link

    Development of ADS051, an oral, gut‐restricted, small molecule neutrophil modulator for the treatment of neutrophil‐mediated inflammatory diseases

    No full text
    Neutrophils are an essential component of the innate immune system; however, uncontrolled neutrophil activity can lead to inflammation and tissue damage in acute and chronic diseases. Despite inclusion of neutrophil presence and activity in clinical evaluations of inflammatory diseases, the neutrophil has been an overlooked therapeutic target. The goal of this program was to design a small molecule regulator of neutrophil trafficking and activity that fulfilled the following criteria: (a) modulates neutrophil epithelial transmigration and activation, (b) lacks systemic exposure, (c) preserves protective host immunity, and (d) is administered orally. The result of this discovery program was ADS051 (also known as BT051), a low permeability, small molecule modulator of neutrophil trafficking and activity via blockade of multidrug resistance protein 2 (MRP2)‐ and formyl peptide receptor 1 (FPR1)‐mediated mechanisms. ADS051, based on a modified scaffold derived from cyclosporine A (CsA), was designed to have reduced affinity for calcineurin with low cell permeability and, thus, a greatly reduced ability to inhibit T‐cell function. In cell‐based assays, ADS051 did not inhibit cytokine secretion from activated human T cells. Furthermore, in preclinical models, ADS051 showed limited systemic absorption (<1% of total dose) after oral administration, and assessment of ADS051 in human, cell‐based systems demonstrated inhibition of neutrophil epithelial transmigration. In addition, preclinical toxicology studies in rats and monkeys receiving daily oral doses of ADS051 for 28 days did not reveal safety risks or ADS051‐related toxicity. Our results to date support the clinical development of ADS051 in patients with neutrophil‐mediated inflammatory diseases

    Interaction of daptomycin with two recombinant thromboplastin reagents leads to falsely prolonged patient prothrombin time/International Normalized Ratio results

    No full text
    A cluster of patients experiencing elevations of International Normalized Ratio without clinical bleeding in temporal association with daptomycin therapy was identified during postmarketing safety surveillance. A common element was the thromboplastin reagent used for the laboratory assay. The present study evaluated the effect of daptomycin on measured prothrombin time using commercially available thromboplastin reagent kits commonly used in the United States. Thirty reagent kits were obtained. Daptomycin was added to pooled normal human plasma samples to achieve final concentrations of 0-200 Όg/ml. Quality control ranges were established for each reagent kit using normal and abnormal control plasmas. Triplicate assays of the prothrombin time were performed on the daptomycin-spiked plasma samples using each of the 30 kits. The activated partial thromboplastin time and thrombin time were also assessed. Statistical comparisons of interest were performed using analysis of variance with the Bonferroni t-test for multiple comparisons; α = 0.05 was used. Addition of daptomycin to human plasma samples dose-dependently prolonged measured prothrombin times when two recombinant thromboplastin reagents were utilized. The findings were statistically and clinically significant. No clinically meaningful effect was observed with the other reagents. The activated partial thromboplastin time and thrombin time were not affected. Prolonged International Normalized Ratio patient values were an artifact caused by the interaction of daptomycin with the in-vitro prothrombin time test reagent; an in-vivo anticoagulant effect was not observed. Healthcare providers should consider a possible drug-laboratory test interaction if prolonged prothrombin time or elevated International Normalized Ratio values are observed in patients receiving daptomycin

    Data from: Nuclear and mitochondrial patterns of population structure in North Pacific false killer whales (Pseudorca crassidens)

    No full text
    False killer whales (Pseudorca crassidens) are large Delphinids typically found in deep water far offshore. However, in the Hawaiian Archipelago there are two resident island-associated populations of false killer whales, one in the waters around the main Hawaiian Islands (MHI) and one in the waters around the Northwestern Hawaiian Islands (NWHI). We use mitochondrial DNA (mtDNA) control region sequences and genotypes from 16 nuclear (nucDNA) microsatellite loci from 206 individuals to examine levels of differentiation among the two island-associated populations and offshore animals from the central and eastern North Pacific. Both mtDNA and nucDNA exhibit highly significant differentiation between populations, confirming limited gene flow in both sexes. The mtDNA haplotypes exhibit a strong pattern of phylogeographic concordance, with island-associated populations sharing three closely related haplotypes not found elsewhere in the Pacific. However, nucDNA data suggests that NWHI animals are at least as differentiated from MHI animals as they are from offshore animals. The patterns of differentiation revealed by the two marker types suggest that the island-associated false killer whale populations likely share a common colonization history, but have limited contemporary gene flow

    Data from: Nuclear and mitochondrial patterns of population structure in North Pacific false killer whales (Pseudorca crassidens)

    Get PDF
    False killer whales (Pseudorca crassidens) are large Delphinids typically found in deep water far offshore. However, in the Hawaiian Archipelago there are two resident island-associated populations of false killer whales, one in the waters around the main Hawaiian Islands (MHI) and one in the waters around the Northwestern Hawaiian Islands (NWHI). We use mitochondrial DNA (mtDNA) control region sequences and genotypes from 16 nuclear (nucDNA) microsatellite loci from 206 individuals to examine levels of differentiation among the two island-associated populations and offshore animals from the central and eastern North Pacific. Both mtDNA and nucDNA exhibit highly significant differentiation between populations, confirming limited gene flow in both sexes. The mtDNA haplotypes exhibit a strong pattern of phylogeographic concordance, with island-associated populations sharing three closely related haplotypes not found elsewhere in the Pacific. However, nucDNA data suggests that NWHI animals are at least as differentiated from MHI animals as they are from offshore animals. The patterns of differentiation revealed by the two marker types suggest that the island-associated false killer whale populations likely share a common colonization history, but have limited contemporary gene flow
    corecore