466 research outputs found

    A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date

    Full text link
    It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s−1^{-1} and an ejecta mass of few ×10−5\times 10^{-5} M⊙_{\odot}. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.Comment: 26 pages, 13 figure

    Chiral Symmetry Breaking in Quenched Massive Strong-Coupling QED4_4

    Get PDF
    We present results from a study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched QED4_4. Results are compared for three different fermion-photon proper vertex {\it Ans\"{a}tze\/}: bare ÎłÎŒ\gamma^\mu, minimal Ball-Chiu, and Curtis-Pennington. The procedure is straightforward to implement and numerically stable. This is the first study in which this technique is used and it should prove useful in future DSE studies, whenever renormalization is required in numerical work.Comment: REVTEX 3.0, 15 pages plus 7 uuencoded PostScript figure

    Renormalization and Chiral Symmetry Breaking in Quenched QED in Arbitrary Covariant Gauge

    Get PDF
    We extend a previous Landau-gauge study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in strong-coupling, quenched QED_4 to arbitrary covariant gauges. We use the fermion-photon proper vertex proposed by Curtis and Pennington with an additional correction term included to compensate for the small gauge-dependence induced by the ultraviolet regulator. We discuss the chiral limit and the onset of dynamical chiral symmetry breaking in the presence of nonperturbative renormalization. We extract the critical coupling in several different gauges and find evidence of a small residual gauge-dependence in this quantity.Comment: REVTEX 3.0, 27 pages including 14 Extended Postscript files comprising 9 figures. Replacement: discussion of chiral limit corrected, and some minor typographical errors fixed. To appear in Phys. Rev.

    Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae

    Get PDF
    Salicylic acid (SA)-induced defense responses are important factors during effector triggered immunity and microbe-associated molecular pattern (MAMP)-induced immunity in plants. This article presents evidence that a member of the Arabidopsis CBP60 gene family, CBP60g, contributes to MAMP-triggered SA accumulation. CBP60g is inducible by both pathogen and MAMP treatments. Pseudomonas syringae growth is enhanced in cbp60g mutants. Expression profiles of a cbp60g mutant after MAMP treatment are similar to those of sid2 and pad4, suggesting a defect in SA signaling. Accordingly, cbp60g mutants accumulate less SA when treated with the MAMP flg22 or a P. syringae hrcC strain that activates MAMP signaling. MAMP-induced production of reactive oxygen species and callose deposition are unaffected in cbp60g mutants. CBP60g is a calmodulin-binding protein with a calmodulin-binding domain located near the N-terminus. Calmodulin binding is dependent on Ca2+. Mutations in CBP60g that abolish calmodulin binding prevent complementation of the SA production and bacterial growth defects of cbp60g mutants, indicating that calmodulin binding is essential for the function of CBP60g in defense signaling. These studies show that CBP60g constitutes a Ca2+ link between MAMP recognition and SA accumulation that is important for resistance to P. syringae

    A Polyadenylation Factor Subunit Implicated in Regulating Oxidative Signaling in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6. METHODOLOGY/PRINCIPAL FINDINGS: The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin-related domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on polyadenylation in the mutant. CONCLUSIONS/SIGNIFICANCE: These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to oxidative stress

    SdiA, an N-Acylhomoserine Lactone Receptor, Becomes Active during the Transit of Salmonella enterica through the Gastrointestinal Tract of Turtles

    Get PDF
    encode a LuxR-type AHL receptor, SdiA, they cannot synthesize AHLs. In vitro, it is known that SdiA can detect AHLs produced by other bacterial species..We conclude that the normal gastrointestinal microbiota of most animal species do not produce AHLs of the correct type, in an appropriate location, or in sufficient quantities to activate SdiA. However, the results obtained with turtles represent the first demonstration of SdiA activity in animals

    Beth Levine in memoriam

    Get PDF
    Beth Levine was born on 7 April 1960 in Newark, New Jersey. She went to college at Brown University where she received an A.B. Magna Cum Laude, and she attended medical school at Cornell University Medical College, receiving her MD in 1986. She completed her internship and residency in Internal Medicine at Mount Sinai Hospital in New York, and her fellowship in Infectious Diseases at The Johns Hopkins Hospital. Most recently, Beth was a Professor of Internal Medicine and Microbiology, Director of the Center for Autophagy Research, and holder of the Charles Sprague Distinguished Chair in Biomedical Science at the University of Texas Southwestern Medical Center in Dallas. Beth died on 15 June 2020 from cancer. Beth is survived by her husband, Milton Packer, and their two children, Rachel (26 years old) and Ben (25 years old). Dr. Levine was as an international leader in the field of autophagy research. Her laboratory identified the mammalian autophagy gene BECN1/beclin 1; identified conserved mechanisms underlying the regulation of autophagy (e.g. BCL2-BECN1 complex formation, insulin-like signaling, EGFR, ERBB2/HER2 and AKT1-mediated BECN1 phosphosphorylation); and provided the first evidence that autophagy genes are important in antiviral host defense, tumor suppression, lifespan extension, apoptotic corpse clearance, metazoan development, Na,K-ATPase-regulated cell death, and the beneficial metabolic effects of exercise. She developed a potent autophagy-inducing cell permeable peptide, Tat-beclin 1, which has potential therapeutic applications in a range of diseases. She was a founding Associate Editor of the journal Autophagy and an editorial board member of Cell and Cell Host & Microbe. She has received numerous awards/honors in recognition of her scientific achievement, including: The American Cancer Society Junior Faculty Research Award (1994); election into the American Society of Clinical Investigation (2000); the Ellison Medical Foundation Senior Scholars Award in Global Infectious Diseases (2004); elected member, American Association of Physicians (2005); appointment as a Howard Hughes Medical Institute Investigator (2008); Edith and Peter O’Donnell Award in Medicine (2008); elected fellow, American Association for the Advancement of Science (2012); election into the National Academy of Sciences (2013); election into the Academy of Medicine, Engineering and Science of Texas (2013); the ASCI Stanley J. Korsmeyer Award (2014); Phyllis T. Bodel Women in Medicine Award, Yale University School of Medicine (2018); recipient, Barcroft Medal, Queen’s University Belfast (2018).Fil: An, Zhenyi. No especifĂ­ca;Fil: Ballabi, Andrea. No especifĂ­ca;Fil: Bennett, Lynda. No especifĂ­ca;Fil: Boya, Patricia. No especifĂ­ca;Fil: Cecconi, Francesco. No especifĂ­ca;Fil: Chiang, Wei Chung. No especifĂ­ca;Fil: Codogno, Patrice. No especifĂ­ca;Fil: Colombo, Maria Isabel. No especifĂ­ca;Fil: Cuervo, Ana Maria. No especifĂ­ca;Fil: Debnath, Jayanta. No especifĂ­ca;Fil: Deretic, Vojo. No especifĂ­ca;Fil: Dikic, Ivan. No especifĂ­ca;Fil: Dionne, Keith. No especifĂ­ca;Fil: Dong, Xiaonan. No especifĂ­ca;Fil: Elazar, Zvulun. No especifĂ­ca;Fil: Galluzzi, Lorenzo. No especifĂ­ca;Fil: Gentile, Frank. No especifĂ­ca;Fil: Griffin, Diane E.. No especifĂ­ca;Fil: Hansen, Malene. No especifĂ­ca;Fil: Hardwick, J. Marie. No especifĂ­ca;Fil: He, Congcong. No especifĂ­ca;Fil: Huang, Shu Yi. No especifĂ­ca;Fil: Hurley, James. No especifĂ­ca;Fil: Jackson, William T.. No especifĂ­ca;Fil: Jozefiak, Cindy. No especifĂ­ca;Fil: Kitsis, Richard N.. No especifĂ­ca;Fil: Klionsky, Daniel J.. No especifĂ­ca;Fil: Kroemer, Guido. No especifĂ­ca;Fil: Meijer, Alfred J.. No especifĂ­ca;Fil: MelĂ©ndez, Alicia. No especifĂ­ca;Fil: Melino, Gerry. No especifĂ­ca;Fil: Mizushima, Noboru. No especifĂ­ca;Fil: Murphy, Leon O.. No especifĂ­ca;Fil: Nixon, Ralph. No especifĂ­ca;Fil: Orvedahl, Anthony. No especifĂ­ca;Fil: Pattingre, Sophie. No especifĂ­ca;Fil: Piacentini, Mauro. No especifĂ­ca;Fil: Reggiori, Fulvio. No especifĂ­ca;Fil: Ross, Theodora. No especifĂ­ca;Fil: Rubinsztein, David C.. No especifĂ­ca;Fil: Ryan, Kevin. No especifĂ­ca;Fil: Sadoshima, Junichi. No especifĂ­ca;Fil: Schreiber, Stuart L.. No especifĂ­ca;Fil: Scott, Frederick. No especifĂ­ca;Fil: Sebti, Salwa. No especifĂ­ca;Fil: Shiloh, Michael. No especifĂ­ca;Fil: Shoji, Sanae. No especifĂ­ca;Fil: Simonsen, Anne. No especifĂ­ca;Fil: Smith, Haley. No especifĂ­ca;Fil: Sumpter, Kathryn M.. No especifĂ­ca;Fil: Thompson, Craig B.. No especifĂ­ca;Fil: Thorburn, Andrew. No especifĂ­ca;Fil: Thumm, Michael. No especifĂ­ca;Fil: Tooze, Sharon. No especifĂ­ca;Fil: Vaccaro, Maria Ines. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de BioquĂ­mica y Medicina Molecular. Universidad de Buenos Aires. Facultad Medicina. Instituto de BioquĂ­mica y Medicina Molecular; ArgentinaFil: Virgin, Herbert W.. No especifĂ­ca;Fil: Wang, Fei. No especifĂ­ca;Fil: White, Eileen. No especifĂ­ca;Fil: Xavier, Ramnik J.. No especifĂ­ca;Fil: Yoshimori, Tamotsu. No especifĂ­ca;Fil: Yuan, Junying. No especifĂ­ca;Fil: Yue, Zhenyu. No especifĂ­ca;Fil: Zhong, Qing. No especifĂ­ca
    • 

    corecore