8 research outputs found

    An analysis of Brazilian sugarcane bagasse ash behavior under thermal gasification.

    Get PDF
    Background: Ashes from sugarcane were analyzed by X-ray fluorescence, ash content, X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). FactSage 6.4 database software was used to estimate viscosity at high temperatures (900 - 1550°C) of them. Results: The results showed that although ashes from sugarcane bagasse contain silica, most of its SiO2 is from soil contamination. Higher and lower silica samples treated at 1350°C for 20 minutes showed that the fine portion of fraction of the ashes melted at this temperature. Conclusions: The melting phase could act as sticking flux for the coarse silica particles on the gasifier bottom wall, which could compromise the gasification process

    Effect of ion-exchange temperature on mechanical properties of a dental porcelain

    No full text
    The objective of this study was to determine the influence of different ion-exchange temperatures on the biaxial flexural strength (sigma(f)), hardness (HV) and indentation fracture resistance (K(IF)) of a dental porcelain. Disk-shaped specimens were divided into five groups (n = 10) and submitted to an ion-exchange procedure using KNO(3) paste for 15 min in the following temperatures (degrees C); (I) 430; (II) 450; (III) 470; (IV) 490; (V) 510; and control (no ion exchange). The value of sigma(f) was determined in artificial saliva at 37 degrees C. The values of HV and K(IF) were obtained using 3 Vickers indentations in each specimen (19.6 N). Results showed that ion exchange increases significantly the properties of the material as compared to the control and no significant differences were found among the temperatures tested for any of the properties studied. (C) 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved.FAPESPCNPqCAPE

    Preparação de LiNbO3 e LiNbO3:Eu3+ pelo método dos precursores poliméricos

    No full text
    The ferroelectric compound LiNbO3 was prepared by the polymeric precursors method in the polycrystalline form containing different concentrations of Eu3+. The compounds were characterized by X-ray diffraction, vibrational and electronic spectroscopy. Electronic spectroscopy was shown to be sensitive to small concentrations of contaminating phases allowing a good control of the compound purity. The presence of Eu3+ ions leads to the formation of the LiNb3O8 phase in the range of 500 to 800 degreesC. Above this temperature range LiNbO3 and tetragonal (T') EuNbO4 were obtained

    Mechanical properties and porosity of dental glass-ceramics hot-pressed at different temperatures

    Get PDF
    The objective of this work was to evaluate biaxial-flexural-strength (σf), Vickers hardness (HV), fracture toughness (K Ic), Young's modulus (E), Poisson's ratio (ν) and porosity (P) of two commercial glass-ceramics, Empress (E1) and Empress 2 (E2), as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures
    corecore