34 research outputs found

    Herpes Viral Origin of the Parsonage-Turner Syndrome: Highlighting of Serological Immune Anti-Herpes Deficiency Cured by Anti-Herpes Therapy.

    Get PDF
    International audienceIn 2012, a 50 year-old athletic male presented with weakness, pain and unilateral phrenic paralysis, followed by bilateral phrenic paralysis with deep dyspnea. In 2013, the Parsonage-Turner syndrome was diagnosed. When the patient was seen in September 2014 for the first time, he was facing phrenic neuromuscular failure, which led to the hypothesis of neurotropic herpes viruses. A control of the global serological anti-Herpes immunity to analyze his antibody (Ab) levels confirmed herpes immune genetic deficiency. An appropriate herpes chemotherapy treatment was proposed. Immediately, a spectacular recovery of the patient was observed, and after a few weeks, the respiratory function tests showed normal values. The hypothesis of the inductive role of viruses of the herpes family in the Parsonage-Turner syndrome was thus substantiated. The patient's immune deficiency covers the HSV2, HHV3, HHV4, HHV5 and HHV6 Ab levels. This led to the control of herpes in the family lineage: indeed, his daughter presented alterations of her serological herpes Ab levels

    Coronavirus M Protein Trafficking in Epithelial Cells Utilizes a Myosin Vb Splice Variant and Rab10

    Get PDF
    The membrane (M) glycoprotein of coronaviruses (CoVs) serves as the nidus for virion assembly. Using a yeast two-hybrid screen, we identified the interaction of the cytosolic tail of Murine Hepatitis Virus (MHV-CoV) M protein with Myosin Vb (MYO5B), specifically with the alternative splice variant of cellular MYO5B including exon D (MYO5B+D), which mediates interaction with Rab10. When co-expressed in human lung epithelial A549 and canine kidney epithelial MDCK cells, MYO5B+D co-localized with the MHV-CoV M protein, as well as with the M proteins from Porcine Epidemic Diarrhea Virus (PEDV-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome 2 (SARS-CoV-2). Co-expressed M proteins and MYO5B+D co-localized with endogenous Rab10 and Rab11a. We identified point mutations in MHV-CoV M that blocked the interaction with MYO5B+D in yeast 2-hybrid assays. One of these point mutations (E121K) was previously shown to block MHV-CoV virion assembly and its interaction with MYO5B+D. The E to K mutation at homologous positions in PEDV-CoV, MERS-CoV and SARS-CoV-2 M proteins also blocked colocalization with MYO5B+D. The knockdown of Rab10 blocked the co-localization of M proteins with MYO5B+D and was rescued by re-expression of CFP-Rab10. Our results suggest that CoV M proteins traffic through Rab10-containing systems, in association with MYO5B+D

    Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs

    Get PDF
    DNA complementarity is expressed by way of three hydrogen bonds for a G:C base pair and two for A:T. As a result, careful control of the denaturation temperature of PCR allows selective amplification of AT-rich alleles. Yet for the same reason, the converse is not possible, selective amplification of GC-rich alleles. Inosine (I) hydrogen bonds to cytosine by two hydrogen bonds while diaminopurine (D) forms three hydrogen bonds with thymine. By substituting dATP by dDTP and dGTP by dITP in a PCR reaction, DNA is obtained in which the natural hydrogen bonding rule is inversed. When PCR is performed at limiting denaturation temperatures, it is possible to recover GC-rich viral genomes and inverted Alu elements embedded in cellular mRNAs resulting from editing by dsRNA dependent host cell adenosine deaminases. The editing of Alu elements in cellular mRNAs was strongly enhanced by type I interferon induction indicating a novel link mRNA metabolism and innate immunity

    ISG15 Modulates Development of the Erythroid Lineage

    Get PDF
    Activation of erythropoietin receptor allows erythroblasts to generate erythrocytes. In a search for genes that are up-regulated during this differentiation process, we have identified ISG15 as being induced during late erythroid differentiation. ISG15 belongs to the ubiquitin-like protein family and is covalently linked to target proteins by the enzymes of the ISGylation machinery. Using both in vivo and in vitro differentiating erythroblasts, we show that expression of ISG15 as well as the ISGylation process related enzymes Ube1L, UbcM8 and Herc6 are induced during erythroid differentiation. Loss of ISG15 in mice results in decreased number of BFU-E/CFU-E in bone marrow, concomitant with an increased number of these cells in the spleen of these animals. ISG15-/- bone marrow and spleen-derived erythroblasts show a less differentiated phenotype both in vivo and in vitro, and over-expression of ISG15 in erythroblasts is found to facilitate erythroid differentiation. Furthermore, we have shown that important players of erythroid development, such as STAT5, Globin, PLC γ and ERK2 are ISGylated in erythroid cells. This establishes a new role for ISG15, besides its well-characterized anti-viral functions, during erythroid differentiation

    The Biased Nucleotide Composition of HIV-1 Triggers Type I Interferon Response and Correlates with Subtype D Increased Pathogenicity

    Get PDF
    International audienceThe genome of human immunodeficiency virus (HIV) has an average nucleotide composition strongly biased as compared to the human genome. The consequence of such nucleotide composition on HIV pathogenicity has not been investigated yet. To address this question, we analyzed the role of nucleotide bias of HIV-derived nucleic acids in stimulating type-I interferon response in vitro. We found that the biased nucleotide composition of HIV is detected in human cells as compared to humanized sequences, and triggers a strong innate immune response, suggesting the existence of cellular immune mechanisms able to discriminate RNA sequences according to their nucleotide composition or to detect specific secondary structures or linear motifs within biased RNA sequences. We then extended our analysis to the entire genome scale by testing more than 1300 HIV-1 complete genomes to look for an association between nucleotide composition of HIV-1 group M subtypes and their pathogenicity. We found that subtype D, which has an increased pathogenicity compared to the other subtypes, has the most divergent nucleotide composition relative to the human genome. These data support the hypothesis that the biased nucleotide composition of HIV-1 may be related to its pathogenicity. Citation: Vabret N, Bailly-Bechet M, Najburg V, Mü ller-Trutwin M, Verrier B, et al. (2012) The Biased Nucleotide Composition of HIV-1 Triggers Type I Interferon Response and Correlates with Subtype D Increased Pathogenicity

    Murine FLT3 Ligand-Derived Dendritic Cell-Mediated Early Immune Responses Are Critical To Controlling Cell-Free Human T Cell Leukemia Virus Type 1 Infection.

    No full text
    International audienceHuman T cell leukemia virus type 1 (HTLV-1) is associated with two immunologically distinct diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T cell leukemia. We observed previously that depletion of dendritic cells (DCs) in CD11c-diphtheria toxin receptor transgenic mice followed by infection with cell-free virus led to greater proviral and Tax mRNA loads and diminished cellular immune response compared with mice infected with cell-associated virus. To understand the significance of these in vivo results and explore the host-pathogen interaction between DCs and cell-free HTLV-1, we used FLT3 ligand-cultured mouse bone marrow-derived DCs (FL-DCs) and chimeric HTLV-1. Phenotypically, the FL-DCs upregulated expression of surface markers (CD80, CD86, and MHC class II) on infection; however, the level of MHC class I remained unchanged. We performed kinetic studies to understand viral entry, proviral integration, and expression of the viral protein Tax. Multiplex cytokine profiling revealed production of an array of proinflammatory cytokines and type 1 IFN (IFN-α) by FL-DCs treated with virus. Virus-matured FL-DCs stimulated proliferation of autologous CD3(+) T cells as shown by intracellular nuclear Ki67 staining and produced IFN-γ when cultured with infected FL-DCs. Gene expression studies using type 1 IFN-specific and DC-specific arrays revealed upregulation of IFN-stimulated genes, most cytokines, and transcription factors, but a distinct downregulation of many chemokines. Overall, these results highlight the critical early responses generated by FL-DCs on challenge with cell-free chimeric HTLV-1

    Depletion of dendritic cells enhances susceptibility to cell-free infection of human T cell leukemia virus type 1 in CD11c-diphtheria toxin receptor transgenic mice.

    No full text
    International audienceHuman T cell leukemia virus type 1 (HTLV-1) is associated with two immunologically distinct diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T cell leukemia. The genesis of these diseases is believed to be associated with the route (mucosa versus blood) and mode (cell-free versus cell-associated) of primary infection as well as the modulation of dendritic cell (DC) functions. To explore the role of DCs during early HTLV-1 infection in vivo, we used a chimeric HTLV-1 with a replaced envelope gene from Moloney murine leukemia virus to allow HTLV-1 to fuse with murine cells, which are generally not susceptible to infection with human retroviruses. We also used a CD11c-diphtheria toxin receptor transgenic mouse model system that permits conditional transient depletion of CD11c(+) DCs. We infected these transgenic mice with HTLV-1 using both cell-free and cell-associated infection routes in the absence and presence of DCs. The ablation of DCs led to an enhanced susceptibility to infection with cell-free but not cell-associated HTLV-1 in both CD4 and non-CD4 fractions, as measured by the proviral load. Infection with cell-free virus in the absence of DCs was also found to have increased levels of Tax mRNA in the non-CD4 fraction. Moreover, depletion of DCs significantly dampened the cellular immune response (IFN-gamma(+)CD8(+) T cells) against both cell-free and cell-associated virus. These results uniquely differentiate the involvement of DCs in early cell-free versus late cell-associated infection of HTLV-1 and highlight a significant aspect of viral immunopathogenesis related to the progression of adult T cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis after the initial infection

    Vaccines in Development against West Nile Virus

    Get PDF
    West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV) disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV) vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine
    corecore