21 research outputs found

    Chronotype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health.

    Get PDF
    Chrono-nutrition is an emerging research field in nutritional epidemiology that encompasses 3 dimensions of eating behavior: timing, frequency, and regularity. To date, few studies have investigated how an individual's circadian typology, i.e., one's chronotype, affects the association between chrono-nutrition and cardiometabolic health. This review sets the directions for future research by providing a narrative overview of recent epidemiologic research on chronotype, its determinants, and its association with dietary intake and cardiometabolic health. Limited research was found on the association between chronotype and dietary intake in infants, children, and older adults. Moreover, most of the evidence in adolescents and adults was restricted to cross-sectional surveys with few longitudinal cohorts simultaneously collecting data on chronotype and dietary intake. There was a gap in the research concerning the association between chronotype and the 3 dimensions of chrono-nutrition. Whether chronotype modifies the association between diet and cardiometabolic health outcomes remains to be elucidated. In conclusion, further research is required to understand the interplay between chronotype, chrono-nutrition, and cardiometabolic health outcomes

    Cross-regulatory circuits linking inflammation, high-fat diet, and the circadian clock

    No full text
    Mammalian physiology resonates with the daily changes in the external environment, allowing processes such as rest-activity cycles, metabolism, and body temperature to synchronize with daily changes in the surroundings. Studies have identified the molecular underpinnings of robust oscillations in gene expression occurring over the 24-h day, but how acute or chronic perturbations modulate gene expression rhythms, physiology, and behavior is still relatively unknown. In this issue of Genes & Development, Hong and colleagues (pp. 1367-1379) studied how acute and chronic inflammation interacts with the circadian clock. They found that NF-kappa B signaling can modify chromatin states and modulate expression of genes in the core clock network as well as circadian locomotor behavior. Interestingly, a high-fat diet (HFD) fed to mice also triggers this inflammation pathway, suggesting that cross-regulatory circuits link inflammation, HFD, and the circadian clock

    At the Intersection of Microbiota and Circadian Clock: Are Sexual Dimorphism and Growth Hormones the Missing Link to Pathology? Circadian Clock and Microbiota: Potential Egffect on Growth Hormone and Sexual Development

    No full text
    Reciprocal interactions between the host circadian clock and the microbiota are evidenced by recent literature. Interestingly, dysregulation of either the circadian clock or microbiota is associated with common human pathologies such as obesity, type 2 diabetes, or neurological disorders. However, it is unclear to what extent a perturbation of pathways regulated by both the circadian clock and microbiota is involved in the development of these disorders. It is speculated that these perturbations are associated with impaired growth hormone (GH) secretion and sexual development. The GH axis is a broadly neglected pathway and could be the main converging point for the interaction of both circadian clock and microbiota. Here, the links between the circadian clock and microbiota are reviewed. Finally, the effects of chronodisruption and dysbiosis on physiology and pathology are discussed and it is speculated whether a common deregulation of the GH pathway could mediates those effects

    Chronopharmacology: New insights and therapeutic implications

    Full text link
    Most facets of mammalian physiology and behavior vary according to time of day, thanks to endogenous circadian clocks. Therefore, it is not surprising that many aspects of pharmacology and toxicology also oscillate according to the same 24-h clocks. Daily oscillations in abundance of proteins necessary for either drug absorption or metabolism result in circadian pharmacokinetics, and oscillations in the physiological systems targeted by these drugs result in circadian pharmacodynamics. These clocks are present in most cells of the body, organized in a hierarchical fashion. Interestingly, some aspects of physiology and behavior are controlled directly via a "master clock" in the suprachiasmatic nuclei of the hypothalamus, whereas others are controlled by "slave" oscillators in separate brain regions or body tissues. Recent research shows that these clocks can respond to different cues and thereby show different phase relationships. Therefore, full prediction of chronopharmacology in pathological contexts will likely require a systems biology approach that considers chronointeractions among different clock-regulated systems. Expected final online publication date for the Annual Review of Pharmacology and Toxicology Volume 54 is January 06, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates

    Proteomics and circadian rhythms: It's all about signaling!

    No full text
    Proteomic technologies using MS offer new perspectives in circadian biology, in particular the possibility to study PTMs. To date, only very few studies have been carried out to decipher the rhythmicity of protein expression in mammals with large-scale proteomics. Although signaling has been shown to be of high relevance, comprehensive characterization studies of PTMs are even more rare. This review aims at describing the actual landscape of circadian proteomics and the opportunities and challenges appearing on the horizon. Emphasis was given to signaling processes for their role in metabolic health as regulated by circadian clocks and environmental factors. Those signaling processes are expected to be better and more deeply characterized in the coming years with proteomics

    Glucose Homeostasis: Regulation by Peripheral Circadian Clocks in Rodents and Humans

    No full text
    Most organisms, including humans, have developed an intrinsic system of circadian oscillators, allowing the anticipation of events related to the rotation of Earth around its own axis. The mammalian circadian timing system orchestrates nearly all aspects of physiology and behavior. Together with systemic signals, emanating from the central clock that resides in the hypothalamus, peripheral oscillators orchestrate tissue-specific fluctuations in gene expression, protein synthesis, and posttranslational modifications, driving overt rhythms in physiology and behavior. There is increasing evidence on the essential roles of the peripheral oscillators, operative in metabolically active organs in the regulation of body glucose homeostasis. Here, we review some recent findings on the molecular and cellular makeup of the circadian timing system and its implications in the temporal coordination of metabolism in health and disease

    The Complementary Strand of the Human T-Cell Leukemia Virus Type 1 RNA Genome Encodes a bZIP Transcription Factor That Down-Regulates Viral Transcription

    Get PDF
    The RNA genome of the human T-cell leukemia virus type 1 (HTLV-1) codes for proteins involved in infectivity, replication, and transformation. We report in this study the characterization of a novel viral protein encoded by the complementary strand of the HTLV-1 RNA genome. This protein, designated HBZ (for HTLV-1 bZIP factor), contains a N-terminal transcriptional activation domain and a leucine zipper motif in its C terminus. We show here that HBZ is able to interact with the bZIP transcription factor CREB-2 (also called ATF-4), known to activate the HTLV-1 transcription by recruiting the viral trans-activator Tax on the Tax-responsive elements (TxREs). However, we demonstrate that the HBZ/CREB-2 heterodimers are no more able to bind to the TxRE and cyclic AMP response element sites. Taking these findings together, the functional inactivation of CREB-2 by HBZ is suggested to contribute to regulation of the HTLV-1 transcription. Moreover, the characterization of a minus-strand gene protein encoded by HTLV-1 has never been reported until now
    corecore