2 research outputs found

    Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA

    Get PDF
    Three Rat1/Xrn2 homologues exist in Arabidopsis thaliana: nuclear AtXRN2 and AtXRN3, and cytoplasmic AtXRN4. The latter has a role in degrading 3′ products of miRNA-mediated mRNA cleavage, whereas all three proteins act as endogenous post-transcriptional gene silencing suppressors. Here we show that, similar to yeast nuclear Rat1, AtXRN2 has a role in ribosomal RNA processing. The lack of AtXRN2, however, does not result in defective formation of rRNA 5′-ends but inhibits endonucleolytic cleavage at the primary site P in the pre-rRNA resulting in the accumulation of the 35S* precursor. This does not lead to a decrease in mature rRNAs, as additional cleavages occur downstream of site P. Supplementing a P-site cleavage-deficient xrn2 plant extract with the recombinant protein restores processing activity, indicating direct participation of AtXRN2 in this process. Our data suggest that the 5′ external transcribed spacer is shortened by AtXRN2 prior to cleavage at site P and that this initial exonucleolytic trimming is required to expose site P for subsequent endonucleolytic processing by the U3 snoRNP complex. We also show that some rRNA precursors and excised spacer fragments that accumulate in the absence of AtXRN2 and AtXRN3 are polyadenylated, indicating that these nucleases contribute to polyadenylation-dependent nuclear RNA surveillance

    Evidence that XRN4, an Arabidopsis homolog of exoribonuclease XRN1, preferentially impacts transcripts with certain sequences or in particular functional categories

    No full text
    One of the major players controlling RNA decay is the cytoplasmic 5′-to-3′ exoribonuclease, which is conserved among eukaryotic organisms. In Arabidopsis, the 5′-to-3′ exoribonuclease XRN4 is involved in disease resistance, the response to ethylene, RNAi, and miRNA-mediated RNA decay. Curiously, XRN4 appears to display selectivity among its substrates because certain 3′ cleavage products formed by miRNA-mediated decay, such as from ARF10 mRNA, accumulate in the xrn4 mutant, whereas others, such as from AGO1, do not. To examine the nature of this selectivity, transcripts that differentially accumulate in xrn4 were identified by combining PARE and Affymetrix arrays. Certain functional categories, such as stamen-associated proteins and hydrolases, were over-represented among transcripts decreased in xrn4, whereas transcripts encoding nuclear-encoded chloroplast-targeted proteins and nucleic acid–binding proteins were over-represented in transcripts increased in xrn4. To ascertain if RNA sequence influences the apparent XRN4 selectivity, a series of chimeric constructs was generated in which the miRNA-complementary sites and different portions of the surrounding sequences from AGO1 and ARF10 were interchanged. Analysis of the resulting transgenic plants revealed that the presence of a 150 nucleotide sequence downstream from the ARF10 miRNA-complementary site conferred strong accumulation of the 3′ cleavage products in xrn4. In addition, sequence analysis of differentially accumulating transcripts led to the identification of 27 hexamer motifs that were over-represented in transcripts or miRNA-cleavage products accumulating in xrn4. Taken together, the data indicate that specific mRNA sequences, like those in ARF10, and mRNAs from select functional categories are attractive targets for XRN4-mediated decay
    corecore