29 research outputs found

    Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors

    Get PDF
    To investigate the role of A2A adenosine receptors in adaptive responses to chronic intermittent dopamine receptor stimulation, we compared the behavioral sensitization elicited by repeated L-DOPA treatment in hemiparkinsonian wild-type (WT) and A2A adenosine receptor knock-out (A2A KO) mice. Although the unilateral nigrostriatal lesion produced by intrastriatal injection of 6-hydroxydopamine was indistinguishable between WT and A2A KO mice, they developed strikingly different patterns of behavioral sensitization after daily treatment with low doses of L-DOPA for 3 weeks. WT mice initially displayed modest contralateral rotational responses and then developed progressively greater responses that reached a maximum within 1 week and persisted for the duration of the treatment. In contrast, any rotational behavioral sensitization in A2A KO mice was transient and completely reversed within 2 weeks. Similarly, the time to reach the peak rotation was progressively shortened in WT mice but remained unchanged in A2A KO mice. Furthermore, daily L-DOPA treatment produced gradually sensitized grooming in WT mice but failed to induce any sensitized grooming in A2A KO mice. Finally, repeated L-DOPA treatment reversed the 6-OHDA-induced reduction of striatal dynorphin mRNA in WT but not A2A KO mice, raising the possibility that the A2A receptor may contribute to L-DOPA-induced behavioral sensitization by facilitating adaptations within the dynorphin-expressing striatonigral pathway. Together these results demonstrate that the A2A receptor plays a critical role in the development and particularly the persistence of behavioral sensitization to repeated L-DOPA treatment. Furthermore, they raise the possibility that the maladaptive dyskinetic responses to chronic L-DOPA treatment in Parkinson's disease may be attenuated by A2A receptor inactivation.Peer Reviewe

    Seismic-induced rockfalls and landslide dam following the October 30, 2016 earthquake in Central Italy

    No full text
    On October 30, 2016, a seismic event and its aftershocks produced diffuse landslides along the SP 209 road in the Nera River Gorge (Central Italy). Due to the steep slopes and the outcropping of highly fractured and bedded limestone, several rockfalls were triggered, of which the main event occurred on the slope of Mount Sasso Pizzuto. The seismic shock acted on a rock wedge that, after an initial slide, developed into a rockfall. The debris accumulation blocked the SP 209 road and dammed the Nera River, forming a small lake. The river discharge was around 3.6 m 3 /s; the water overtopped the dam and flooded the road. By a preliminary topographic survey, we estimated that the debris accumulation covers an area of about 16,500 m 2 , while the volume is around 70,000 m 3 . The maximum volume occupied by the pre-existing talus mobilized by the rockfall is about 20% of the total volume. Besides blocking the road, the rockfall damaged a bridge severely, while, downstream of the dam, the water flow caused erosion of a road embankment. A rockfall protection gallery, a few hundred meters downstream of the dam, was damaged during the event. Other elastic nets and rigid barriers were not sufficient to protect the road from single-block rockfalls, with volumes around 1–2 m 3 . Considering the geological and geomorphological conditions, as well as the high seismicity and the socioeconomic importance of the area, a review of the entire rockfall protection systems is required to ensure protection of critical infrastructure and local communities

    Adenosine A2A receptors in neuroadaptation to repeated dopaminergic stimulation: Implications for the treatment of dyskinesias in Parkinson's disease

    No full text
    A2A receptor has recently attracted considerable interest as a potential target for Parkinson's disease (PD) therapy based on the motor-enhancing and neuroprotective effects of A2A antagonists in animal models of PD. The unique neuronal localization of the adenosine A 2A receptor in the basal ganglia and its extensive interactions with dopaminergic and glutamatergic systems led the authors to investigate a potential role of the A2A receptor in the development of behavioral sensitization in response to repeated dopaminergic stimulation. Because dopamine-induced behavioral sensitization shares several neurochemical and behavioral features with dyskinesia, characterizing this novel aspect of A 2A receptor function may enhance understanding and management of dyskinesia in PD. Recent studies from several laboratories suggest that the A2A receptor may be an important mediator of maladaptive changes in response to long-term dopamine stimulation. The authors summarize their investigation of the role of A2A receptors in two paradigms of behavioral sensitization elicited by daily treatment with either L-dopa in hemiparkinsonian mice or amphetamine in naive mice. The results demonstrate that the A2A receptor is required for the development of behavioral sensitization in response to repeated L-dopa treatment in hemiparkinsonian mice and repeated amphetamine administration in normal mice. Together with pharmacologic studies, these results raise the possibility that the maladaptive dyskinetic responses to long-term L-dopa management of PD may be attenuated by A2A receptor blockade. Potential presynaptic, postsynaptic (cellular), and trans-synaptic (network) mechanisms are discussed.Peer Reviewe

    Adenosine receptor blockade reverses hypophagia and enhances locomotor activity of dopamine-deficient mice

    No full text
    Adenosine receptors modulate dopaminergic function by regulating dopamine release in presynaptic neurons and intracellular signaling in postsynaptic striatal neurons. To investigate how adenosine impinges on the action of dopamine in feeding and locomotion, genetically altered, dopamine-deficient mice were treated with adenosine receptor antagonists. Acute administration of the nonselective adenosine receptor antagonist, caffeine (5–25 mg/kg i.p.), reversed the hypophagia of mutant mice and induced hyperactivity in both control and mutant animals. However, caffeine treatment elicited much less hyperactivity in dopamine-deficient mice than did l-3,4-dihydroxyphenylalanine (l-dopa) administration, which partially restores dopamine content. Caffeine treatment enhanced feeding of l-dopa-treated mutants but, unexpectedly, it reduced their hyperlocomotion. Caffeine administration induced c-Fos expression in the cortex of dopamine-deficient mice but had no effect in the striatum by itself. Caffeine attenuated dopamine agonist-induced striatal c-Fos expression. An antagonist selective for adenosine A(2A) receptors induced feeding and locomotion in mutants much more effectively than an A(1) receptor antagonist. l-dopa-elicited feeding and hyperlocomotion were reduced in mutants treated with an A(1) receptor agonist, whereas an A(2A) receptor agonist decreased l-dopa-induced feeding without affecting locomotion. The observations suggest that the hypophagia and hypoactivity of mutants result not only because of the absence of dopamine but also because of the presence of A(2A) receptor signaling. This study of a genetic model of dopamine depletion provides evidence that A(2A) receptor antagonists could ameliorate the hypokinetic symptoms of advanced Parkinson's disease patients without inducing excessive motor activity
    corecore