2,145 research outputs found

    Representations and Cocycle Twists of Color Lie Algebras

    Full text link
    We study relations between finite-dimensional representations of color Lie algebras and their cocycle twists. Main tools are the universal enveloping algebras and their FCR-properties (finite-dimensional representations are completely reducible.) Cocycle twist preserves the FCR-property. As an application, we compute all finite dimensional representations (up to isomorphism) of the color Lie algebra sl2csl_2^c.Comment: 18 pages, with an concrete exampl

    Acoustical analysis of gear housing vibration

    Get PDF
    The modal and acoustical analysis of the NASA gear-noise rig is described. Experimental modal analysis techniques were used to determine the modes of vibration of the transmission housing. The resulting modal data were then used in a boundary element method (BEM) analysis to calculate the sound pressure and sound intensity on the surface of the housing as well as the radiation efficiency of each mode. The radiation efficiencies of the transmission housing modes are compared with theoretical results for finite, baffled plates. A method that uses the measured mode shapes and the BEM to predict the effect of simple structural changes on the sound radiation efficiency of the modes of vibration is also described

    Comparison of analysis and experiment for gearbox noise

    Get PDF
    Low contact ratio spur gears were tested in the NASA gear-noise rig to study the noise radiated from the top of the gearbox. Experimental results were compared with a NASA acoustics code to validate the code for predicting transmission noise. The analytical code is based on the boundary element method (BEM) which models the gearbox top as a plate in an infinite baffle. Narrow band vibration spectra measured at 63 nodes on the gearbox top were used to produce input data for the BEM model. The BEM code predicted the total sound power based on the measured vibration. The measured sound power was obtained from an acoustic intensity scan taken near the surface of the gearbox at the same 63 nodes used for vibration measurement. Analytical and experimental results were compared at four different speeds for sound power at each of the narrow band frequencies over the range of 400 to 3200 Hz. Results are also compared for the sound power level at meshing frequency plus three sideband pairs and at selected gearbox resonant frequencies. The difference between predicted and measure sound power is typically less than 3 dB with the predicted value generally less than the measured value

    Validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    Get PDF
    Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model

    A virtual operator technique for enhancement of computer-to-computer interactivity

    Get PDF
    A traditional way to handle the problem of system compatibility uses command translation software in which the translation routines are fixed and virtually impossible for a user to add or update. Moreover, in the case where a new system is to be added, new translation software will be required;The virtual operator research proposes a way to implement an expert system with human-like capability, learning communication techniques from human experts and letting users without significant computer background communicate with different systems as desired. The virtual operator has been trained and is capable of communicating with NAS9160/WYLBUR, VAX/VMS and VAX/UNIX

    Fabrication Sequence Optimization for Minimizing Distortion in Multi-Axis Additive Manufacturing

    Full text link
    Additive manufacturing of metal parts involves phase transformations and high temperature gradients which lead to uneven thermal expansion and contraction, and, consequently, distortion of the fabricated components. The distortion has a great influence on the structural performance and dimensional accuracy, e.g., for assembly. It is therefore of critical importance to model, predict and, ultimately, reduce distortion. In this paper, we present a computational framework for fabrication sequence optimization to minimize distortion in multi-axis additive manufacturing (e.g., robotic wire arc additive manufacturing), in which the fabrication sequence is not limited to planar layers only. We encode the fabrication sequence by a continuous pseudo-time field, and optimize it using gradient-based numerical optimization. To demonstrate this framework, we adopt a computationally tractable yet reasonably accurate model to mimic the material shrinkage in metal additive manufacturing and thus to predict the distortion of the fabricated components. Numerical studies show that optimized curved layers can reduce distortion by orders of magnitude as compared to their planar counterparts

    Identifying a Transcription Factor’s Regulatory Targets from its Binding Targets

    Get PDF
    ChIP-chip data, which shows binding of transcription factors (TFs) to promoter regions in vivo, are widely used by biologists to identify the regulatory targets of TFs. However, the binding of a TF to a gene does not necessarily imply regulation. Thus, it is important to develop computational methods which can extract a TF’s regulatory targets from its binding targets. We developed a method, called REgulatory Targets Extraction Algorithm (RETEA), which uses partial correlation analysis on gene expression data to extract a TF’s regulatory targets from its binding targets inferred from ChIP-chip data. We applied RETEA to yeast cell cycle microarray data and identified the plausible regulatory targets of eleven known cell cycle TFs. We validated our predictions by checking the enrichments for cell cycle-regulated genes, common cellular processes and common molecular functions. Finally, we showed that RETEA performs better than three published methods (MA-Network, TRIA and Garten et al’s method)

    ESL Club & Women Speak: Our Second Home in America

    Get PDF
    SWOSU ESL Club Newsletter: Fall 2017 is the third issue of the newsletter for the English as a Second Language Club (ESL).https://dc.swosu.edu/esl/1002/thumbnail.jp

    The Insula and Its Epilepsies

    Get PDF
    Insular seizures are great mimickers of seizures originating elsewhere in the brain. The insula is a highly connected brain structure. Seizures may only become clinically evident after ictal activity propagates out of the insula with semiology that reflects the propagation pattern. Insular seizures with perisylvian spread, for example, manifest first as throat constriction, followed next by perioral and hemisensory symptoms, and then by unilateral motor symptoms. On the other hand, insular seizures may spread instead to the temporal and frontal lobes and present like seizures originating from these regions. Due to the location of the insula deep in the brain, interictal and ictal scalp electroencephalogram (EEG) changes can be variable and misleading. Magnetic reso- nance imaging, magnetic resonance spectroscopy, magnetoencephalography, positron emission tomography, and single-photon computed tomography imaging may assist in establishing a diagnosis of insular epilepsy. Intracranial EEG recordings from within the insula, using stereo-EEG or depth electrode techniques, can prove insular seizure origin. Seizure onset, most commonly seen as low-voltage, fast gamma activity, however, can be highly localized and easily missed if the insula is only sparsely sampled. Moreover, seizure spread to the contralateral insula and other brain regions may occur rapidly. Extensive sampling of the insula with multiple electrode trajectories is necessary to avoid these pitfalls. Understanding the functional organization of the insula is helpful when interpreting the semiology produced by insular seizures. Electrical stimulation mapping around the central sulcus of the insula results in paresthesias, while stimulation of the posterior insula typically produces painful sensations. Visceral sensations are the next most common result of insular stimulation. Treatment of insular epilepsy is evolving, but poses challenges. Surgical resections of the insula are effective but risk significant morbidity if not carefully planned. Neurostimulation is an emerging option for treatment, especially for seizures with onset in the posterior insula. The close association of the insula with marked autonomic changes has led to interest in the role of the insula in sudden unexpected death in epilepsy and warrants additional study with larger patient cohorts

    The Inert Gas Effect On The Rate Of Evaporation Of Zinc And Cadmium

    Get PDF
    An experimental study has been made to investigate the effect of argon and helium on the rate of evaporation of zinc and cadmium under one atmosphere pressure at temperatures ranging from 500 to 850°C. The experimental results were compared with the maximum rates calculated using the effusion formula as well as with values obtained using two different types of equations based on kinetic theory, diffusion theory, and empirical data. Equations have been derived for expressing the rate of evaporation of zinc and cadmium in both argon and helium as functions of temperature of the liquid zinc and cadmium. It was found that the rates of evaporation of zinc and cadmium were higher in helium than in argon, with the difference increasing with increasing temperature. It was also found that the experimental results obtained in argon agree with the calculated values better than those obtained in helium. © 1980 The Minerals, Metals & Materials Society - ASM Materials - The Materials Information Society
    • …
    corecore