33 research outputs found

    Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective

    Get PDF
    AbstractThe extracellular matrix is an integral and dynamic component of all tissues. Macromolecular compositions and structural architectures of the matrix are tissue-specific and typically are strongly influenced by the magnitude and direction of biomechanical forces experienced as part of normal tissue function. Fibrous extracellular networks of collagen and elastin provide the dominant response to tissue mechanical forces. These matrix proteins enable tissues to withstand high tensile and repetitive stresses without plastic deformation or rupture. Here we provide an overview of the hierarchical molecular and supramolecular assembly of collagens and elastic fibers, and review their capacity for mechanical behavior in response to force. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease

    Comparison of Handaxes from Bose Basin (China) and the Western Acheulean Indicates Convergence of Form, Not Cognitive Differences

    Get PDF
    Alleged differences between Palaeolithic assemblages from eastern Asia and the west have been the focus of controversial discussion for over half a century, most famously in terms of the so-called ‘Movius Line’. Recent discussion has centered on issues of comparability between handaxes from eastern Asian and ‘Acheulean’ examples from western portions of the Old World. Here, we present a multivariate morphometric analysis in order to more fully document how Mid-Pleistocene (i.e. ∼803 Kyr) handaxes from Bose Basin, China compare to examples from the west, as well as with additional (Mode 1) cores from across the Old World. Results show that handaxes from both the western Old World and Bose are significantly different from the Mode 1 cores, suggesting a gross comparability with regard to functionally-related form. Results also demonstrate overlap between the ranges of shape variation in Acheulean handaxes and those from Bose, demonstrating that neither raw material nor cognitive factors were an absolute impediment to Bose hominins in making comparable handaxe forms to their hominin kin west of the Movius Line. However, the shapes of western handaxes are different from the Bose examples to a statistically significant degree. Moreover, the handaxe assemblages from the western Old World are all more similar to each other than any individual assemblage is to the Bose handaxes. Variation in handaxe form is also comparatively high for the Bose material, consistent with suggestions that they represent an emergent, convergent instance of handaxe technology authored by Pleistocene hominins with cognitive capacities directly comparable to those of ‘Acheulean’ hominins

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Proline and Glycine Control Protein Self-Organization into Elastomeric or Amyloid Fibrils

    Get PDF
    SummaryElastin provides extensible tissues, including arteries and skin, with the propensity for elastic recoil, whereas amyloid fibrils are associated with tissue-degenerative diseases, such as Alzheimer's. Although both elastin-like and amyloid-like materials result from the self-organization of proteins into fibrils, the molecular basis of their differing physical properties is poorly understood. Using molecular simulations of monomeric and aggregated states, we demonstrate that elastin-like and amyloid-like peptides are separable on the basis of backbone hydration and peptide-peptide hydrogen bonding. The analysis of diverse sequences, including those of elastin, amyloids, spider silks, wheat gluten, and insect resilin, reveals a threshold in proline and glycine composition above which amyloid formation is impeded and elastomeric properties become apparent. The predictive capacity of this threshold is confirmed by the self-assembly of recombinant peptides into either amyloid or elastin-like fibrils. Our findings support a unified model of protein aggregation in which hydration and conformational disorder are fundamental requirements for elastomeric function

    Polymorphisms in the human tropoelastin gene modify in vitro self-assembly and mechanical properties of elastin-like polypeptides.

    Get PDF
    Elastin is a major structural component of elastic fibres that provide properties of stretch and recoil to tissues such as arteries, lung and skin. Remarkably, after initial deposition of elastin there is normally no subsequent turnover of this protein over the course of a lifetime. Consequently, elastic fibres must be extremely durable, able to withstand, for example in the human thoracic aorta, billions of cycles of stretch and recoil without mechanical failure. Major defects in the elastin gene (ELN) are associated with a number of disorders including Supravalvular aortic stenosis (SVAS), Williams-Beuren syndrome (WBS) and autosomal dominant cutis laxa (ADCL). Given the low turnover of elastin and the requirement for the long term durability of elastic fibres, we examined the possibility for more subtle polymorphisms in the human elastin gene to impact the assembly and long-term durability of the elastic matrix. Surveys of genetic variation resources identified 118 mutations in human ELN, 17 being non-synonymous. Introduction of two of these variants, G422S and K463R, in elastin-like polypeptides as well as full-length tropoelastin, resulted in changes in both their assembly and mechanical properties. Most notably G422S, which occurs in up to 40% of European populations, was found to enhance some elastomeric properties. These studies reveal that even apparently minor polymorphisms in human ELN can impact the assembly and mechanical properties of the elastic matrix, effects that over the course of a lifetime could result in altered susceptibility to cardiovascular disease
    corecore