48 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    A peculiar case of aqueous misdirection from a pseudophakic secluded pupil in a patient with chronic angle closure glaucoma

    No full text
    Purpose: To explore the course of a pseudophakic and pseudoiridic 61-year-old man with a history of open angle glaucoma in his right eye who developed a sub-totally secluded pupil then later presented with angle closure, a significant pressure spike, and a marked myopic refractive shift, consistent with aqueous misdirection. Observations: Goniosynechialysis, surgical removal of much of the native peripheral iris, and zonulohyaloidectomy led to a return to his prior refraction and improve intraocular pressure (IOP) control. Conclusions and Importance: This case demonstrates that a diagnosis of aqueous misdirection should not be disregarded in the presence of a prior vitrectomy and that aqueous misdirection should be strongly considered in cases of elevated IOP with a patent peripheral iridotomy, myopic shift and angle narrowing

    Alternative teaching techniques in computer science

    No full text

    Expression of suppressors of cytokine signaling during liver regeneration

    No full text
    The cytokines TNF and IL-6 play a critical role early in liver regeneration following partial hepatectomy (PH). Since IL-6 activates signal transducers and activators of transcription (STATs), we examined whether the suppressors of cytokine signaling (SOCS) may be involved in terminating IL-6 signaling. We show here that SOCS-3 mRNA is induced 40-fold 2 hours after surgery. SOCS-2 and CIS mRNA are only weakly induced, and SOCS-1 is not detectable. SOCS-3 induction after PH is transient and correlates with a decrease in STAT-3 DNA binding and a loss of tyrosine 705 phosphorylation. This response is markedly reduced in IL-6 knockout (KO) mice. TNF injection induces SOCS-3 mRNA in wild-type mice (albeit weakly compared with the increase observed after PH) but not in TNF receptor 1 or IL-6 KO mice. In contrast, IL-6 injection induces SOCS-3 in these animals, demonstrating a requirement for IL-6 in SOCS-3 induction. IL-6 injection into wild-type mice also induces SOCS-1, -2, and CIS mRNA, in addition to SOCS-3. Together, these results suggest that SOCS-3 may be a key component in downregulating STAT-3 signaling after PH and that SOCS-3 mRNA levels in the regenerating liver are regulated by IL-6
    corecore