402 research outputs found

    Rotational alignment near N=Z and proton-neutron correlations

    Get PDF
    The effects of the residual proton-neutron interactions on bandcrossing features are studied by means of shell model calculations for nucleons in a high-j intruder orbital. The presence of an odd-nucleon shifts the frequency of the alignment of two nucleons of the other kind along the axis of rotation. It is shown that the anomalous delayed crossing observed in nuclei with aligning neutrons and protons occupying the same intruder subshell can be partly attributed to these residual interactions.Comment: 14 pages, including 5 eps figures submitted to Phys. Rev.

    Covariant density functional theory for antimagnetic rotation

    Full text link
    Following the previous letter on the first microscopic description of the antimagnetic rotation (AMR) in 105Cd, a systematic investigation and detailed analysis for the AMR band in the frame-work of tilted axis cranking (TAC) model based on covariant density functional theory are carried out. After performing the microscopic and self-consistentTAC calculations with an given density functional, the configuration for the observed AMR band in 105Cd is obtained from the single-particle Routhians. With the configuration thus obtained, the tilt angle for a given rotational frequency is determined self-consistently by minimizing the total Routhian with respect to the tilt angle. In such a way, the energy spectrum, total angular momenta, kinetic and dynamic moments of inertia, and the B(E2) values for the AMR band in 105Cd are calculated. Good agreement with the data is found. By investigating microscopically the contributions from neutrons and protons to the total angular momentum, the "two-shears-like" mechanism in the AMR band is clearly illus-trated. Finally, the currents leading to time-odd mean fields in the Dirac equation are presented and discussed in detail. It is found that they are essentially determined by the valence particles and/or holes. Their spatial distribution and size depend onthe specific single-particle orbitals and the rotational frequency.Comment: 35 pages, 17 figures, accepted by Phys. Rev.

    Symmetry Breaking by Proton-Neutron Pairing

    Full text link
    The symmetries of the t=1t=1 and t=0t=0 pair-fields are different. The consequences for rotational spectra are discussed. For t=1t=1, the concept of spontaneous breaking and subsequent restoration of the isospin symmetry turns out to be important. It permits us to describe the proton-neutron pair-correlation within the conventional frame of pairing between like particles. The experimental data are consistent with the presence of a t=1t=1 field at low spin in N≈ZN\approx Z nuclei. For a substantial t=0t=0 field, the spectra of even-even and odd-odd N≈ZN\approx Z nuclei become similar. The possibility of a rotationally induced J=1 J=1 pair-field at high spin is considered.Comment: 7 pages 9 figure
    • …
    corecore