119 research outputs found

    Cyclic Performance and Behavior Characterization of Steel Deck Sidelap and Framing Connections

    Get PDF
    A wide variety of steel deck sidelaps and framing connections have been experimentally studied to characterize the cyclic performance required in seismic evaluation of steel deck diaphragms. This study intends to provide cyclic test results of common steel deck connections including screw nestable and top arc seam sidelaps; and powder actuated fasteners, arc spot weld, and arc seam weld framing connections. A total of 24 sidelap and 36 framing connection tests have been performed in the Thin-Walled Structures Laboratory at Johns Hopkins University by NBM Technologies. The connection test results have been used to parameterize a nonlinear hysteretic spring element (i.e. utilizing the Pinching04 material model) applicable to modeling of the connections in high fidelity steel deck diaphragms to evaluate the seismic behavior of the steel deck diaphragm in rigid wall flexible diaphragm buildings, where inelasticity and ductility of the building system are intended to be derived largely from the diaphragm and the connections. Finally, the test results have been compared to AISI 310 and DDM04 connection strength and stiffness predictions. This experimental program is a task within a larger effort, i.e. “Advancing Seismic Provisions for Steel Diaphragm in Rigid Wall - Flexible Diaphragm Buildings” by NBM Technologies. The object of the larger effort is to investigate alternative seismic design provisions for conventionally designed steel diaphragms in Rigid Wall - Flexible Diaphragm Buildings

    An Eye to a Kill: Using Predatory Bacteria to Control Gram-Negative Pathogens Associated with Ocular Infections

    Get PDF
    Ocular infections are a leading cause of vision loss. It has been previously suggested that predatory prokaryotes might be used as live antibiotics to control infections. In this study, Pseudomonas aeruginosa and Serratia marcescens ocular isolates were exposed to the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. All tested S. marcescens isolates were susceptible to predation by B. bacteriovorus strains 109J and HD100. Seven of the 10 P. aeruginosa isolates were susceptible to predation by B. bacteriovorus 109J with 80% being attacked by M. aeruginosavorus. All of the 19 tested isolates were found to be sensitive to at least one predator. To further investigate the effect of the predators on eukaryotic cells, human corneal-limbal epithelial (HCLE) cells were exposed to high concentrations of the predators. Cytotoxicity assays demonstrated that predatory bacteria do not damage ocular surface cells in vitro whereas the P. aeruginosa used as a positive control was highly toxic. Furthermore, no increase in the production of the proinflammatory cytokines IL-8 and TNF-alpha was measured in HCLE cells after exposure to the predators. Finally, injection of high concentration of predatory bacteria into the hemocoel of Galleria mellonella, an established model system used to study microbial pathogenesis, did not result in any measurable negative effect to the host. Our results suggest that predatory bacteria could be considered in the near future as a safe topical bio-control agent to treat ocular infections. © 2013 Shanks et al

    Incidence and Tracking of Escherichia coli O157:H7 in a Major Produce Production Region in California

    Get PDF
    Fresh vegetables have become associated with outbreaks caused by Escherichia coli O157:H7 (EcO157). Between 1995–2006, 22 produce outbreaks were documented in the United States, with nearly half traced to lettuce or spinach grown in California. Outbreaks between 2002 and 2006 induced investigations of possible sources of pre-harvest contamination on implicated farms in the Salinas and San Juan valleys of California, and a survey of the Salinas watershed. EcO157 was isolated at least once from 15 of 22 different watershed sites over a 19 month period. The incidence of EcO157 increased significantly when heavy rain caused an increased flow rate in the rivers. Approximately 1000 EcO157 isolates obtained from cultures of>100 individual samples were typed using Multi-Locus Variable-number-tandem-repeat Analysis (MLVA) to assist in identifying potential fate and transport of EcO157 in this region. A subset of these environmental isolates were typed by Pulse Field Gel Electrophoresis (PFGE) in order to make comparisons with human clinical isolates associated with outbreak and sporadic illness. Recurrence of identical and closely related EcO157 strains from specific locations in the Salinas and San Juan valleys suggests that transport of the pathogen is usually restricted. In a preliminary study, EcO157 was detected in water at multiple locations in a low-flow creek only within 135 meters of a point source. However, possible transport up to 32 km was detected during periods of higher water flow associated with flooding. During the 2006 baby spinach outbreak investigation, transport was also detected where water was unlikely to be involved. These results indicate that contamination of the environment is a dynamic process involving multiple sources and methods of transport. Intensive studies of the sources, incidence, fate and transport of EcO157 near produce production are required to determine the mechanisms of pre-harvest contamination and potential risks for human illness

    Distribution and Genetic Profiles of Campylobacter in Commercial Broiler Production from Breeder to Slaughter in Thailand

    Get PDF
    Poultry and poultry products are commonly considered as the major vehicle of Campylobacter infection in humans worldwide. To reduce the number of human cases, the epidemiology of Campylobacter in poultry must be better understood. Therefore, the objective of the present study was to determine the distribution and genetic relatedness of Campylobacter in the Thai chicken production industry. During June to October 2012, entire broiler production processes (i.e., breeder flock, hatchery, broiler farm and slaughterhouse) of five broiler production chains were investigated chronologically. Representative isolates of C. jejuni from each production stage were characterized by flaA SVR sequencing and multilocus sequence typing (MLST). Amongst 311 selected isolates, 29 flaA SVR alleles and 17 sequence types (STs) were identified. The common clonal complexes (CCs) found in this study were CC-45, CC-353, CC-354 and CC-574. C. jejuni isolated from breeders were distantly related to those isolated from broilers and chicken carcasses, while C. jejuni isolates from the slaughterhouse environment and meat products were similar to those isolated from broiler flocks. Genotypic identification of C. jejuni in slaughterhouses indicated that broilers were the main source of Campylobacter contamination of chicken meat during processing. To effectively reduce Campylobacter in poultry meat products, control and prevention strategies should be aimed at both farm and slaughterhouse levels

    RB gene family: Genome-wide ChIP approaches could open undiscovered roads

    No full text
    Many in vitro and reporter assays have helped to clarify how transcription factors regulate gene transcription. Today, it is important to decode the map of all transcription factor binding sites in the genome context. Chromatin immunoprecipitation followed by genome-wide analyses have tremendously opened new ways to analyze the mechanisms of action of DNA binding factors, cofactors and epigenetic modifications. It is now possible to correlate these regulatory mechanisms with genomic features such as the promoter, enhancer, silencer, intragenic, and intergenic DNA sequences. These approaches help to clarify the complex rules that govern many biological processes. In this review we discuss the genome-wide approaches applied to the retinoblastoma gene family (RBF), the central player of cell cycle control. There are also new, possible directions that are suggested within the review that can be followed to further explore the role of each pRb members in the transcriptional networks of the cell

    Surface sensitivity of nuclear-knock-out form factors

    No full text

    Study toward the integration of a system for bacterial growth monitoring in an automated specimen processing platform

    No full text
    As bacterial infection diseases represent a relevant threat for human health worldwide, many efforts are spent in accelerating the diagnostic process of biological specimens. The WASPLab automated platform, by COPAN Italia S.p.A., detects bacterial growth by processing the images of the Petri dishes containing a sample to analyze. This work presents a study performed on a developed system that exploits impedance measurement to monitor bacterial growth in Petri dishes in real time. It is part of an activity aiming at system integration in the WASPLab, to enhance its monitoring capabilities and flexibility. Through repeated 24-h tests executed with the system, we successfully detected S. aureus growth in Petri dishes that were inside one of the WASPLab incubators, starting from impedance measurements performed at 50–150 Hz. In particular, depending on the parameter being observed, detection time was between four and six hours, for an initial bacterial concentration in the order of 4.5· 10 7 CFU/ml. These preliminary results represent the first step for evaluating system integration in the WASPLab
    corecore