66 research outputs found

    In-flight validation of Metis Visible-light Polarimeter Coronagraph on board Solar Orbiter

    Full text link
    Context. The Metis coronagraph is one of the remote-sensing instruments of the ESA/NASA Solar Orbiter mission. Metis is aimed at the study of the solar atmosphere and solar wind by simultaneously acquiring images of the solar corona at two different wavelengths; visible-light (VL) within a band ranging from 580 nm to 640 nm, and in the HI Ly-alpha 121.6 +/- 10 nm ultraviolet (UV) light. The visible-light channel includes a polarimeter with electro-optically modulating Liquid Crystal Variable Retarders (LCVRs) to measure the linearly polarized brightness of the K-corona to derive the electron density. Aims. In this paper, we present the first in-flight validation results of the Metis polarimetric channel together with a comparison to the on-ground calibrations. It is the validation of the first use in deep space (with hard radiation environment) of an electro-optical device: a liquid crystal-based polarimeter. Methods. We used the orientation of the K-corona's linear polarization vector during the spacecraft roll maneuvers for the in-flight calibration. Results. The first in-flight validation of the Metis coronagraph on-board Solar Orbiter shows a good agreement with the on-ground measurements. It confirms the expected visible-light channel polarimetric performance. A final comparison between the first pB obtained by Metis with the polarized brightness (pB) obtained by the space-based coronagraph LASCO and the ground-based coronagraph KCor shows the consistency of the Metis calibrated results.Comment: 8 pages, 13 figures, 3 tables, pape

    Beyond the disk: EUV coronagraphic observations of the Extreme Ultraviolet Imager on board Solar Orbiter

    Get PDF
    Context. Most observations of the solar corona beyond 2 R consist of broadband visible light imagery carried out with coronagraphs. The associated diagnostics mainly consist of kinematics and derivations of the electron number density. While the measurement of the properties of emission lines can provide crucial additional diagnostics of the coronal plasma (temperatures, velocities, abundances, etc.), these types of observations are comparatively rare. In visible wavelengths, observations at these heights are limited to total eclipses. In the ultraviolet (UV) to extreme UV (EUV) range, very few additional observations have been achieved since the pioneering results of the Ultraviolet Coronagraph Spectrometer (UVCS). Aims. One of the objectives of the Full Sun Imager (FSI) channel of the Extreme Ultraviolet Imager (EUI) on board the Solar Orbiter mission has been to provide very wide field-of-view EUV diagnostics of the morphology and dynamics of the solar atmosphere in temperature regimes that are typical of the lower transition region and of the corona. Methods. FSI carries out observations in two narrowbands of the EUV spectrum centered on 17.4 nm and 30.4 nm that are dominated, respectively, by lines of FeIX/X (formed in the corona around 1 MK) and by the resonance line of HeII (formed around 80 kK in the lower transition region). Unlike previous EUV imagers, FSI includes a moveable occulting disk that can be inserted in the optical path to reduce the amount of instrumental stray light to a minimum. Results. FSI detects signals at 17.4 nm up to the edge of its field of view (7 R), which is about twice further than was previously possible. Operation at 30.4 nm are for the moment compromised by an as-yet unidentified source of stray light. Comparisons with observations by the LASCO and Metis coronagraphs confirm the presence of morphological similarities and differences between the broadband visible light and EUV emissions, as documented on the basis of prior eclipse and space-based observations. Conclusions. The very-wide-field observations of FSI out to about 3 and 7 R, without and with the occulting disk, respectively, are paving the way for future dedicated instruments

    Beyond the disk: EUV coronagraphic observations of the Extreme Ultraviolet Imager on board Solar Orbiter

    Full text link
    Most observations of the solar corona beyond 2 Rs consist of broadband visible light imagery from coronagraphs. The associated diagnostics mainly consist of kinematics and derivations of the electron number density. While the measurement of the properties of emission lines can provide crucial additional diagnostics of the coronal plasma (temperatures, velocities, abundances, etc.), these observations are comparatively rare. In visible wavelengths, observations at these heights are limited to total eclipses. In the VUV range, very few additional observations have been achieved since the pioneering results of UVCS. One of the objectives of the Full Sun Imager (FSI) channel of the EUI telescope on board the Solar Orbiter mission has been to provide very wide field-of-view EUV diagnostics of the morphology and dynamics of the solar atmosphere in temperature regimes that are typical of the lower transition region and of the corona. FSI carries out observations in two narrowbands of the EUV spectrum centered on 17.4 nm and 30.4 nm that are dominated, respectively, by lines of Fe IX/X (formed in the corona around 1 MK) and by the resonance line of He II (formed around 80 kK in the lower transition region). Unlike previous EUV imagers, FSI includes a moveable occulting disk that can be inserted in the optical path to reduce the amount of instrumental stray light to a minimum. FSI detects signals at 17.4 nm up to the edge of its FOV (7~Rs), which is about twice further than was previously possible. Comparisons with observations by the LASCO and Metis coronagraphs confirm the presence of morphological similarities and differences between the broadband visible light and EUV emissions, as documented on the basis of prior eclipse and space-based observations. The very-wide-field observations of FSI are paving the way for future dedicated instruments

    A high-latitude coronal mass ejection observed by a constellation of coronagraphs: Solar Orbiter/Metis, STEREO-A/COR2, and SOHO/LASCO

    Get PDF
    Context. A few days before the first perihelion of the Solar Orbiter nominal mission, which occurred on 2022 March 26, the Metis coronagraph on board Solar Orbiter detected a coronal mass ejection (CME) that was moving away from the far side of the Sun (with respect to Solar Orbiter) at high northern latitudes. The eruption was also seen by other spacecraft, in particular, by STEREO-A, which was in quadrature configuration with Solar Orbiter. Aims. We analyse the different views of the CME by a constellation of spacecraft with the purpose to determine the speed and acceleration of the CME, and to identify the source region of the CME. Methods. Considering the positions of various spacecraft on 2022 March 22, this CME happened to be within the field of view of STEREO-A/SECCHI, and it was visible over the limb from SOHO/LASCO. We present the results of the 3D reconstruction of the CME based on the graduated cylindrical shell model and of the identification of the possible origin of the CME using extreme-ultraviolet (EUV) observations by Solar Orbiter/EUI, STEREO-A/EUVI, and SDO/AIA. The observations in EUV are compared with the coronal magnetic structure obtained by the potential field source surface method. Results. The 3D reconstruction of the CME derives a central latitude of 29 N, a Stonyhurst longitude of 125, and an average radial speed at the apex of 322 ± 33 km s1 between 4 and 13 RȮ, which is probably not high enough to generate a shock wave. The estimated average acceleration of the CME is 16 ± 11 m s2 in the same range of distances from the Sun. This CME may be associated with the disappearance of a coronal cloud prominence, which is seen in the EUV by STEREO-A/EUVI and SDO/AIA, and is also associated with rapidly evolving emerging magnetic flux

    In-flight radiometric calibration of the Metis Visible Light channel using stars and comparison with STEREO-A/COR2 data

    Get PDF
    Context. We present the results for the in-flight radiometric calibration performed for the Visible Light (VL) channel of the Metis coronagraph on board Solar Orbiter. Aims. The radiometric calibration is a fundamental step in building the official pipeline of the instrument, devoted to producing the calibrated data in physical units (L2 data). Methods. To obtain the radiometric calibration factor (ĂŹÎĽVL), we used stellar targets transiting the Metis field of view. We derived ĂŹÎĽVLby determining the signal of each calibration star by means of the aperture photometry and calculating its expected flux in the Metis band pass. The analyzed data set covers the time range from the beginning of the Cruise Phase of the mission (June 2020) until March 2021. Results. Considering the uncertainties, the estimated factor ĂŹÎĽVLis in a good agreement with that obtained during the on-ground calibration campaign. This implies that up to March 2021 there was no measurable reduction in the VL channel throughput. Finally, we compared the total and polarized brightness visible light images of the solar corona acquired with Metis and STEREO-A/COR2 during the November 2020 superior conjunction of these instruments. A general good agreement was obtained between the images of these instruments for both the total and polarized brightness

    First light observations of the solar wind in the outer corona with the Metis coronagraph

    Get PDF
    In this work, we present an investigation of the wind in the solar corona that has been initiated by observations of the resonantly scattered ultraviolet emission of the coronal plasma obtained with UVCS-SOHO, designed to measure the wind outflow speed by applying Doppler dimming diagnostics. Metis on Solar Orbiter complements the UVCS spectroscopic observations that were performed during solar activity cycle 23 by simultaneously imaging the polarized visible light and the H?» I Lyman-α corona in order to obtain high spatial and temporal resolution maps of the outward velocity of the continuously expanding solar atmosphere. The Metis observations, taken on May 15, 2020, provide the first HI Lyman-α images of the extended corona and the first instantaneous map of the speed of the coronal plasma outflows during the minimum of solar activity and allow us to identify the layer where the slow wind flow is observed. The polarized visible light (580-640 nm) and the ultraviolet HI Lyα (121.6 nm) coronal emissions, obtained with the two Metis channels, were combined in order to measure the dimming of the UV emission relative to a static corona. This effect is caused by the outward motion of the coronal plasma along the direction of incidence of the chromospheric photons on the coronal neutral hydrogen. The plasma outflow velocity was then derived as a function of the measured Doppler dimming. The static corona UV emission was simulated on the basis of the plasma electron density inferred from the polarized visible light. This study leads to the identification, in the velocity maps of the solar corona, of the high-density layer about ±10° wide, centered on the extension of a quiet equatorial streamer present at the east limb - the coronal origin of the heliospheric current sheet - where the slowest wind flows at about 160 ± 18 km s-1 from 4 R⊙ to 6 R⊙. Beyond the boundaries of the high-density layer, the wind velocity rapidly increases, marking the transition between slow and fast wind in the corona

    Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter-Parker Solar Probe Quadrature

    Get PDF
    This Letter addresses the first Solar Orbiter (SO)–Parker Solar Probe (PSP) quadrature, occurring on 2021 January 18 to investigate the evolution of solar wind from the extended corona to the inner heliosphere. Assuming ballistic propagation, the same plasma volume observed remotely in the corona at altitudes between 3.5 and 6.3 solar radii above the solar limb with the Metis coronagraph on SO can be tracked to PSP, orbiting at 0.1 au, thus allowing the local properties of the solar wind to be linked to the coronal source region from where it originated. Thanks to the close approach of PSP to the Sun and the simultaneous Metis observation of the solar corona, the flow-aligned magnetic field and the bulk kinetic energy flux density can be empirically inferred along the coronal current sheet with an unprecedented accuracy, allowing in particular estimation of the Alfvén radius at 8.7 solar radii during the time of this event. This is thus the very first study of the same solar wind plasma as it expands from the sub-Alfvénic solar corona to just above the Alfvén surface

    Velocity-resolved reverberation mapping of five bright Seyfert 1 galaxies

    Get PDF
    We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one AGN (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-Hβ reverberation signatures, and (2) to look for velocity-dependent time delays that might be indicators of the gross kinematics of the broad-line region. We successfully measure Hbeta time delays and black hole masses for five AGNs, four of which have previous reverberation mass measurements. The values measured here are in agreement with earlier estimates, though there is some intrinsic scatter beyond the formal measurement errors. We observe velocity dependent Hβ lags in each case, and find that the patterns have changed in the intervening five years for three AGNs that were also observed in 2007.PostprintPeer reviewe
    • …
    corecore