16,357 research outputs found
Infrared spectra of van de Waals complexes of importance in planetary atmospheres
It has been suggested that (CO2)2 and Ar-CO2 are important constituents of the planetary atmospheres of Venus and Mars. Recent results on the laboratory spectroscopy of CO2 containing van der Waals complexes which may be of use in the modeling of the spectra of planetary atmospheres are presented. Sub-Doppler infrared spectra were obtained for (CO2)2, (CO2)3, and rare-gas-CO2 complexes in the vicinity of the CO2 Fermi diad at 2.7 micrometers using a color-center-laser optothermal spectrometer. From the spectroscopic constants the geometries of the complexes have been determined and van der Waals vibrational frequencies have been estimated. The equilibrium configurations are C2h, C3h, and C2v, for (CO2)2, (CO2)3, and the rare-gas-CO2 complexes, respectively. Most of the homogeneous linewidths for the revibrational transitions range from 0.5 to 22 MHz, indicating that predissociation is as much as four orders of magnitude faster than radiative processes for vibrational relaxation in these complexes
Micrometer-sized Water Ice Particles for Planetary Science Experiments: Influence of Surface Structure on Collisional Properties
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressureātemperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ā210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ā10 to ā30 Ć
(ā2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ā210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressureātemperature environment, may have a larger influence on collision outcomes than previously thought
Now the wars are over: The past, present and future of Scottish battlefields
Battlefield archaeology has provided a new way of appreciating historic battlefields. This paper provides a summary of the long history of warfare and conflict in Scotland which has given rise to a large number of battlefield sites. Recent moves to highlight the archaeological importance of these sites, in the form
of Historic Scotlandās Battlefields Inventory are discussed, along with some of the problems associated with the preservation and management of these important
cultural sites
Online identification and nonlinear control of the electrically stimulated quadriceps muscle
A new approach for estimating nonlinear models of the electrically stimulated quadriceps muscle group under nonisometric conditions is investigated. The model can be used for designing controlled neuro-prostheses. In order to identify the muscle dynamics (stimulation pulsewidth-active knee moment relation) from discrete-time angle measurements only, a hybrid model structure is postulated for the shank-quadriceps dynamics. The model consists of a relatively well known time-invariant passive component and an uncertain time-variant active component. Rigid body dynamics, described by the Equation of Motion (EoM), and passive joint properties form the time-invariant part. The actuator, i.e. the electrically stimulated muscle group, represents the uncertain time-varying section. A recursive algorithm is outlined for identifying online the stimulated quadriceps muscle group. The algorithm requires EoM and passive joint characteristics to be known a priori. The muscle dynamics represent the product of a continuous-time nonlinear activation dynamics and a nonlinear static contraction function described by a Normalised Radial Basis Function (NRBF) network which has knee-joint angle and angular velocity as input arguments. An Extended Kalman Filter (EKF) approach is chosen to estimate muscle dynamics parameters and to obtain full state estimates of the shank-quadriceps dynamics simultaneously. The latter is important for implementing state feedback controllers. A nonlinear state feedback controller using the backstepping method is explicitly designed whereas the model was identified a priori using the developed identification procedure
Pasture Species Effects on Animal Performance
Increasing concerns about food quality have resulted in investigations into the effects of different forage species on animal production and carcass quality. Pure species plots of high-endophyte ryegrass (Lolium perenne L.), white clover (Trifolium repens L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.) or lotus (Lotus corniculatus L.) were established and lambs grazed the species for 120 days during summer. Pasture species influenced growth rate, hot carcass weight, GR, wool growth, faecal egg counts, adult nematodes at slaughter, and sheep meat odour and flavour. Lambs grazing white clover, lotus or chicory outperformed those grazing ryegrass or plantain, and were also fatter
- ā¦