1,043 research outputs found
Micrococcal Nuclease Does Not Substantially Bias Nucleosome Mapping
We have mapped sequence-directed nucleosome positioning on genomic DNA molecules using high-throughput sequencing. Chromatins, prepared by reconstitution with either chicken or frog histones, were separately digested to mononucleosomes using either micrococcal nuclease (MNase) or caspase-activated DNase (CAD). Both enzymes preferentially cleave internucleosomal (linker) DNA, although they do so by markedly different mechanisms. MNase has hitherto been very widely used to map nucleosomes, although concerns have been raised over its potential to introduce bias. Having identified the locations and quantified the strength of both the chicken or frog histone octamer binding sites on each DNA, the results obtained with the two enzymes were compared using a variety of criteria. Both enzymes displayed sequence specificity in their preferred cleavage sites, although the nature of this selectivity was distinct for the two enzymes. In addition, nucleosomes produced by CAD nuclease are 8–10 bp longer than those produced with MNase, with the CAD cleavage sites tending to be 4–5 bp further out from the nucleosomal dyad than the corresponding MNase cleavage sites. Despite these notable differences in cleavage behaviour, the two nucleases identified essentially equivalent patterns of nucleosome positioning sites on each of the DNAs tested, an observation that was independent of the histone type. These results indicate that biases in nucleosome positioning data collected using MNase are, under our conditions, not significant
Vocalizations by Isolated Piglets: A Reliable Indicator of Piglet Need Directed Towards the Sow
When suckling piglets are isolated from the sow and litter-mates they vocalize a great deal. Sows also call when isolated from their piglets. In one experiment, we found that isolated piglets doubled their call rate in response to playback of sow calls, indicating that piglets are directing calls towards the sow. In a second experiment, we found that variation in the piglet isolation calls related to aspects of the piglet\u27s condition: piglets isolated for 13 min in an enclosure kept at approximately 14°C called more, used higher frequency calls and longer calls, than litter-mates isolated in an enclosure kept at 30°C. These differences in vocal behaviour were significant at 8 and 12 min of isolation, but not at 1, 2 or 4 min. These results for pigs correspond to those found with other species, indicating that characteristics of isolation calls can provide information about a young animal\u27s need for supplemental heat that can be supplied by the parent. The results also agree with a previous study on pigs, showing that features of these vocalizations vary with the piglet\u27s need for other resources such as milk
Salicylaldehyde hydrazones: buttressing of outer sphere hydrogen-bonding and copper-extraction properties
Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms
Use of a cAMP BRET Sensor to Characterize a Novel Regulation of cAMP by the Sphingosine 1-Phosphate/G13 Pathway
Regulation of intracellular cyclic adenosine 3',5'-monophosphate (cAMP) is integral in mediating cell growth, cell differentiation, and immune responses in hematopoietic cells. To facilitate studies of cAMP regulation we developed a BRET (bioluminescence resonance energy transfer) sensor for cAMP, CAMYEL (cAMP sensor using YFP-Epac-RLuc), which can quantitatively and rapidly monitor intracellular concentrations of cAMP in vivo. This sensor was used to characterize three distinct pathways for modulation of cAMP synthesis stimulated by presumed Gs-dependent receptors for isoproterenol and prostaglandin E2. Whereas two ligands, uridine 5'-diphosphate and complement C5a, appear to use known mechanisms for augmentation of cAMP via Gq/calcium and Gi, the action of sphingosine 1-phosphate (S1P) is novel. In these cells, S1P, a biologically active lysophospholipid, greatly enhances increases in intracellular cAMP triggered by the ligands for Gs-coupled receptors while having only a minimal effect by itself. The enhancement of cAMP by S1P is resistant to pertussis toxin and independent of intracellular calcium. Studies with RNAi and chemical perturbations demonstrate that the effect of S1P is mediated by the S1P2 receptor and the heterotrimeric G13 protein. Thus in these macrophage cells, all four major classes of G proteins can regulate intracellular cAMP
Mechanically Stabilized Tetrathiafulvalene Radical Dimers
Two donor−acceptor [3]catenanes—composed of a tetracationic molecular square, cyclobis(paraquat-4,4′-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components—have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called “molecular flask” under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV−vis−NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers
Particulate methane monooxygenase contains only mononuclear copper centers
Bacteria that oxidize methane to methanol are central to mitigating emissions of methane, a potent greenhouse gas. The nature of the copper active site in the primary metabolic enzyme of these bacteria, particulate methane monooxygenase (pMMO), has been controversial owing to seemingly contradictory biochemical, spectroscopic, and crystallographic results. We present biochemical and electron paramagnetic resonance spectroscopic characterization most consistent with two monocopper sites within pMMO: one in the soluble PmoB subunit at the previously assigned active site (CuB) and one ~2 nanometers away in the membrane-bound PmoC subunit (CuC). On the basis of these results, we propose that a monocopper site is able to catalyze methane oxidation in pMMO
EFFECTS OF CHANGE IN BODY POSTURE ON PLASMA AND SERUM ELECTROLYTES IN NORMAL SUBJECTS AND IN PRIMARY ALDOSTERONISM
We observed that change in body posture from the supine to the erect position in normal volunteers was associated with a rise in circulating potassium and a fall in sodium concentrations, irrespective of whether the electrolytes were measured in serum or plasma, or whether head-up tilt or ambulation was used. In patients with primary aldosteronism, the fall in serum sodium and rise in serum potassium with ambulation tended to obscure the characteristic electrolyte abnormalities of that syndrome. These changes in potassium and sodium could contribute to the rise in aldosterone secretion on orthostasis. The body posture of patients should be considered in the interpretation of plasma and serum electrolyte levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75439/1/j.1365-2265.1981.tb02972.x.pd
A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes
<p>Abstract</p> <p>Background</p> <p>The genus <it>Actinidia </it>(kiwifruit) consists of woody, scrambling vines, native to China, and only recently propagated as a commercial crop. All species described are dioecious, but the genetic mechanism for sex-determination is unknown, as is the genetic basis for many of the cluster of characteristics making up the unique fruit. It is, however, an important crop in the New Zealand economy, and a classical breeding program would benefit greatly by knowledge of the trait alleles carried by both female and male parents. The application of marker assisted selection (MAS) in seedling populations would also aid the accurate and efficient development of novel fruit types for the market.</p> <p>Results</p> <p>Gene-rich female, male and consensus linkage maps of the diploid species <it>A. chinensis </it>have been constructed with 644 microsatellite markers. The maps consist of twenty-nine linkage groups corresponding to the haploid number n = 29. We found that sex-linked sequence characterized amplified region (SCAR) markers and the 'Flower-sex' phenotype consistently mapped to a single linkage group, in a subtelomeric region, in a section of inconsistent marker order. The region also contained markers of expressed genes, some of unknown function. Recombination, assessed by allelic distribution and marker order stability, was, in the remainder of the linkage group, in accordance with other linkage groups. Fully informative markers to other genes in this linkage group identified the comparative linkage group in the female map, where recombination ratios determining marker order were similar to the autosomes.</p> <p>Conclusion</p> <p>We have created genetic linkage maps that define the 29 linkage groups of the haploid genome, and have revealed the position and extent of the sex-determining locus in <it>A. chinensis</it>. As all <it>Actinidia </it>species are dioecious, we suggest that the sex-determining loci of other <it>Actinidia </it>species will be similar to that region defined in our maps. As the extent of the non-recombining region is limited, our result supports the suggestion that the subtelomeric region of an autosome is in the early stages of developing the characteristics of a sex chromosome. The maps provide a reference of genetic information in <it>Actinidia </it>for use in genetic analysis and breeding programs.</p
The Palmer LTER: A Long-Term Ecological Research Program at Palmer Station, Antarctica
THE ANTARCTIC marine ecosystem-the assemblage of plants, animals, ocean, sea ice, and island components south of the Antarctic Convergence is among the largest readily defined ecosystems on Earth (36 X 106 km2 ) (Hedgpeth, 1977; Petit et al., 1991). This ecosystem is composed of an interconnected system of functionally distinct hydrographic and biogeochemical subdivisions (Treguer and Jacques, 1992) and includes open ocean, frontal regions, shelf-slope waters, sea ice, and marginal ice zones. Oceanic, atmospheric, and biogeochemical processes within this system are thought to be globally significant, have been infrequently studied, and are poorly understood relative to more accessible marine ecosystems (Harris and Stonehouse, 1991; Johannessen et al., 1994). The Palmer Long-Term Ecological Research (Palmer LTER) area west of the Antarctic Peninsula (Fig. la) is a complex combination of a coastal/continental shelf zone and a seasonal sea ice zone, because this area is swept by the yearly advance and retreat of sea ice. The Palmer LTER program is a multidisciplinary program established to study this polar marine ecosystem
Measuring The Evolutionary Rate Of Cooling Of ZZ Ceti
We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 +/- 1.4) x 10(-15) s s(-1) employing the O - C method and (5.45 +/- 0.79) x 10(-15) s s(-1) using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 +/- 1.0) x 10(-15) s s(-1). After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 +/- 1.1) x 10(-15) s s(-1). This value is consistent within uncertainties with the measurement of (4.19 +/- 0.73) x 10(-15) s s(-1) for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.NSF AST-1008734, AST-0909107Norman Hackerman Advanced Research Program 003658-0252-2009Astronom
- …