468 research outputs found
Using the C-O stretch to unravel the nature of hydrogen bonding in low-temperature solid methanol-water condensates
Transmission infrared spectroscopy has been used in a systematic laboratory study to investigate hydrogen bonding in binary mixtures of CH3OH and H2O, vapour deposited at 30 K, as a function of CH3OH/H2O mixing ratio, R. Strong intermolecular interactions are evident between CH3OH and H2O with infrared band profiles of the binary ices differing from that of the pure components and changing significantly with R. Consistent evidence from the O–H and C–H band profiles and detailed analysis of the C–O stretch band reveal two different hydrogen bonding structural regimes below and above R=0.6–0.7. The vapour deposited solid mixtures were found to exhibit behaviour similar to that of liquids with evidence of inhomogeneity and higher coordination number of hydrogen bonds that are concentration dependent. The C–O stretch band was found to consist of three components around 1039 cm-1 (’blue’), 1027 cm-1(’middle’) and 1011 cm-1 (’red’). The ’blue’ and ’middle’ components corresponding to environments with CH3OH dominating as a proton donor (PD) and proton acceptor (PA) respectively reveal preferential bonding of CH3OH as a PA and H2O as a PD in the mixtures. The ’red’ component is only present in the presence of H2O and has been assigned to the involvement of both lone pairs of electrons on the oxygen atom of CH3OH as a PA to two PD H2O atoms. Cooperative effects are evident with concurrent blue-shifts in the C–H stretching modes of CH3OH below R=0.6 indicating CH3 group participation in hydrogen bonding
Seasonal Variation in 25(OH)D at Aberdeen (57°N) and Bone Health Indicators- Could Holidays in the Sun and Cod Liver Oil Supplements Alleviate Deficiency?
Vitamin D has been linked with many health outcomes. The aim of this longitudinal study, was to assess predictors of seasonal variation of 25-hydroxy-vitamin D (25(OH)D) (including use of supplements and holidays in sunny destinations) at a northerly latitude in the UK (57°N) in relation to bone health indicators. 365 healthy postmenopausal women (mean age 62.0 y (SD 1.4)) had 25(OH)D measurements by immunoassay, serum C-telopeptide (CTX), estimates of sunlight exposure (badges of polysulphone film), information regarding holidays in sunny destinations, and diet (from food diaries, including use of supplements such as cod liver oil (CLO)) at fixed 3-monthly intervals over 15 months (subject retention 88%) with an additional 25(OH)D assessment in spring 2008. Bone mineral density (BMD) at the lumbar spine (LS) and dual hip was measured in autumn 2006 and spring 2007 (Lunar I-DXA). Deficiency prevalence (25(OH)
Photodesorption of CO ice
At the high densities and low temperatures found in star forming regions, all
molecules other than H2 should stick on dust grains on timescales shorter than
the cloud lifetimes. Yet these clouds are detected in the millimeter lines of
gaseous CO. At these temperatures, thermal desorption is negligible and hence a
non-thermal desorption mechanism is necessary to maintain molecules in the gas
phase. Here, the first laboratory study of the photodesorption of pure CO ice
under ultra high vacuum is presented, which gives a desorption rate of 3E-3 CO
molecules per UV (7-10.5 eV) photon at 15 K. This rate is factors of 1E2-1E5
larger than previously estimated and is comparable to estimates of other
non-thermal desorption rates. The experiments constrains the mechanism to a
single photon desorption process of ice surface molecules. The measured
efficiency of this process shows that the role of CO photodesorption in
preventing total removal of molecules in the gas has been underestimated.Comment: 5 pages, 4 figures, accepted by ApJ
Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome
Background: Next-generation sequencing is providing researchers with a relatively fast and affordable option for developing genomic resources for organisms that are not among the traditional genetic models. Here we present a de novo assembly of the guppy (Poecilia reticulata) transcriptome using 454 sequence reads, and we evaluate potential uses of this transcriptome, including detection of sex-specific transcripts and deployment as a reference for gene expression analysis in guppies and a related species. Guppies have been model organisms in ecology, evolutionary biology, and animal behaviour for over 100 years. An annotated transcriptome and other genomic tools will facilitate understanding the genetic and molecular bases of adaptation and variation in a vertebrate species with a uniquely well known natural history.
Results: We generated approximately 336 Mbp of mRNA sequence data from male brain, male body, female brain, and female body. The resulting 1,162,670 reads assembled into 54,921 contigs, creating a reference transcriptome for the guppy with an average read depth of 28×. We annotated nearly 40% of this reference transcriptome by searching protein and gene ontology databases. Using this annotated transcriptome database, we identified candidate genes of interest to the guppy research community, putative single nucleotide polymorphisms (SNPs), and male-specific expressed genes. We also showed that our reference transcriptome can be used for RNA- sequencing-based analysis of differential gene expression. We identified transcripts that, in juveniles, are regulated differently in the presence and absence of an important predator, Rivulus hartii, including two genes implicated in stress response. For each sample in the RNA-seq study, >50% of high-quality reads mapped to unique sequences in the reference database with high confidence. In addition, we evaluated the use of the guppy reference transcriptome for gene expression analyses in a congeneric species, the sailfin molly (Poecilia latipinna). Over 40% of reads from the sailfin molly sample aligned to the guppy transcriptome.
Conclusions: We show that next-generation sequencing provided a reliable and broad reference transcriptome. This resource allowed us to identify candidate gene variants, SNPs in coding regions, and sex-specific gene expression, and permitted quantitative analysis of differential gene expression
A SQUAMOSA MADS-box gene involved in the regulation of anthocyanin accumulation in bilberry fruits
Anthocyanins are important health promoting phytochemicals that are abundant in many fleshy fruits. Bilberry (Vaccinium myrtillus L.) is one of the best sources of these compounds. Here we report on the expression pattern and functional analysis of a SQUAMOSA (SQUA) class MADS-box transcription factor, VmTDR4, associated with anthocyanin biosynthesis in bilberry. Levels of VmTDR4 expression were spatially and temporally linked with colour development and anthocyanin-related gene expression. Virus induced gene silencing (VIGS) was used to suppress VmTDR4 expression in bilberry resulting in substantial reduction in anthocyanin levels in fully ripe fruits. Chalcone synthase was used a positive control in the VIGS experiments. Additionally, in sectors of fruit tissue in which the expression of the VmTDR4 gene was silenced, the expression of R2R3 MYB family transcription factors related to the biosynthesis of flavonoids were also altered. We conclude that VmTDR4 plays an important role in the accumulation of anthocyanins during normal ripening in bilberry; probably through direct or indirect control of transcription factors belonging to the R2R3 MYB family
Is there H2O stacking disordered ice I in the Solar System?
Water ice exists in large quantities across the Solar System, and it is involved in a wide range of atmospheric and geological processes. Here we focus on the question if stacking disordered ice I (ice Isd) is present in the Solar System. The conditions required to form ice Isd are described and we argue that previous descriptions of ‘cubic ice’ (ice Ic) in the literature may in fact have been concerned with ice Isd. In contrast to the stable hexagonal ice I (ice Ih) and ice Ic, ice Isd is a highly complex material that encompasses a wide range of possible stacking regimes and structures. The most fundamental quantity to describe a given ice Isd sample is its cubicity which reflects the fraction of cubic stacking. Following an introduction into the characterisation techniques used to identify and characterise ice Isd, we discuss the various environments in the Solar System where ice Isd may exist and the relevance its existence may have. This includes the atmospheres of the inner planets, various icy moons as well as comets and other icy objects in the far reaches of the Solar System. The details of the stacking disorder may contain information about the formation and thermal history of ice Isd samples. This offers the exciting prospect of using ice Isd as a marker material for atmospheric and geological processes. The crystallographic space group of ice Isd allows polar structures which could be an important factor for the accretion of ice particles in space. We conclude that ice Isd should exist at several locations in the Solar System and in potentially large quantities. The definitive identification of ice Isd in a natural environment is a next major milestone in our understanding of the importance of water ice across the Solar System
- …