963 research outputs found

    To Obtain Sinking-fund Payments from Compound-interest Tables

    Get PDF

    Some Problems in Loan Valuation Simplified

    Get PDF

    Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest

    Get PDF
    The neural crest, a transient population of migratory cells, forms the craniofacial skeleton and peripheral nervous system, among other derivatives in vertebrate embryos. The transcriptional repressor Snail2 is thought to be crucial for the epithelial-to-mesenchymal transition (EMT) that promotes neural crest delamination from the neural tube; however, little is known about its downstream targets. To this end, we depleted avian Snail2 in the premigratory neural crest using morpholino antisense oligonucleotides and examined effects on potential targets by quantitative PCR. Several dorsal neural tube genes were upregulated by alleviating Snail2 repression; moreover, the cell adhesion molecule cadherin6B was derepressed within 30 minutes of blocking Snail2 translation. Examination of the chick cadherin6B genomic sequence reveals that the regulatory region contains three pairs of clustered E boxes, representing putative Snail2 binding sites. Furthermore, in vivo and in vitro biochemical analyses demonstrate that Snail2 directly binds to these sites and regulates cadherin6B transcription. These results are the first to describe a direct target of Snail2 repression in vivo and in the context of the EMT that characterizes neural crest developmen

    A vertebrate crossveinless 2 homologue modulates BMP activity and neural crest cell migration

    Get PDF
    Previous work has revealed that proteins that bind to bone morphogenetic proteins (BMPs) and inhibit their signalling have a crucial role in the spatial and temporal regulation of cell differentiation and cell migration by BMPs. We have identified a chick homologue of crossveinless 2, a Drosophila gene that was identified in genetic studies as a promoter of BMP-like signalling. Chick Cv-2 has a conserved structure of five cysteine-rich repeats similar to those found in several BMP antagonists, and a C-terminal Von Willebrand type D domain. Cv-2 is expressed in the chick embryo in a number of tissues at sites at which elevated BMP signalling is required. One such site of expression is premigratory neural crest, in which at trunk levels threshold levels of BMP activity are required to initiate cell migration. We show that, when overexpressed, Cv-2 can weakly antagonise BMP4 activity in Xenopus embryos, but that in other in vitro assays Cv-2 can increase the activity of co-expressed BMP4. Furthermore, we find that increased expression of Cv-2 causes premature onset of trunk neural crest cell migration in the chick embryo, indicative of Cv-2 acting to promote BMP activity at an endogenous site of expression. We therefore propose that BMP signalling is modulated both by antagonists and by Cv-2 that acts to elevate BMP activity

    Book Reviews

    Get PDF

    Book Reviews

    Get PDF
    • ā€¦
    corecore