125 research outputs found

    Overcoming detection loss and noise in squeezing-based optical sensing

    Get PDF
    Among the known resources of quantum metrology, one of the most practical and efficient is squeezing. Squeezed states of atoms and light improve the sensing of the phase, magnetic field, polarization, mechanical displacement. They promise to considerably increase signal-to-noise ratio in imaging and spectroscopy, and are already used in real-life gravitational-wave detectors. But despite being more robust than other states, they are still very fragile, which narrows the scope of their application. In particular, squeezed states are useless in measurements where the detection is inefficient or the noise is high. Here, we experimentally demonstrate a remedy against loss and noise: strong noiseless amplification before detection. This way, we achieve loss-tolerant operation of an interferometer fed with squeezed and coherent light. With only 50% detection efficiency and with noise exceeding the level of squeezed light more than 50 times, we overcome the shot-noise limit by 6 dB. Sub-shot-noise phase sensitivity survives up to 87% loss. Application of this technique to other types of optical sensing and imaging promises a full use of quantum resources in these fields

    3D Cell Culture: Recent Development in Materials with Tunable Stiffness

    Get PDF
    It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness

    Light-Driven Reversible Shaping of Individual Azopolymeric Micro-Pillars

    Get PDF
    Azopolymers are known to exhibit a strong light responsivity known as athermal photofluidization. Although the underlying physics is still under debate, athermal photofluidization has been demonstrated to trigger mass-migration according to the polarization of a proper illumination light. Here, a polymer blend is proposed wherein a commercial azo-polyelectrolyte is mixed with a passive polymer. The blend is patterned as an array of micro-pillars that are individually exposed to visible laser illumination. Thanks to the interplay between the two blend components, a reversible and controlled deformation of the micro-pillars by periodically tuning the laser polarization in time is demonstrated. A reduced mobility of the azo-compound allows to repeatibly elongate and rotate micro-pillars along specific directions, with no significant material flow outisde the initial volume and no significant degradation of the structure morphology over several cycles. The proposed work suggests new degrees of freedom in controlling the mechanical features of micro-patterned light-responsive materials that can be usefully exploited in many application fields

    Materials Testing for the Development of Biocompatible Devices through Vat-Polymerization 3D Printing

    Get PDF
    Light-based 3D printing techniques could be a valuable instrument in the development of customized and affordable biomedical devices, basically for high precision and high flexibility in terms of materials of these technologies. However, more studies related to the biocompatibility of the printed objects are required to expand the use of these techniques in the health sector. In this work, 3D printed polymeric parts are produced in lab conditions using a commercial Digital Light Processing (DLP) 3D printer and then successfully tested to fabricate components suitable for biological studies. For this purpose, different 3D printable formulations based on commercially available resins are compared. The biocompatibility of the 3D printed objects toward A549 cell line is investigated by adjusting the composition of the resins and optimizing post-printing protocols; those include washing in common solvents and UV post-curing treatments for removing unreacted and cytotoxic products. It is noteworthy that not only the selection of suitable materials but also the development of an adequate post-printing protocol is necessary for the development of biocompatible devices

    Microwave-assisted methacrylation of chitosan for 3D printable hydrogels in tissue engineering

    Get PDF
    Light processable natural polymers are highly attractive for 3D printing of biomedical hydrogels with defined geometries and sizes. However, functionalization with photo-curable groups, such as methacrylate or acrylate groups, is required. Here, we investigated a microwave-assisted process for methacrylation of chitosan to replace conventional methacrylation processes that can be time consuming and tedious. The microwave-assisted methacrylation reaction was optimized by varying the synthesis parameters such as the molar ratio of chitosan to the methacrylic agent, the launch and reaction times and process temperature. The optimized process was fast and efficient and allowed tuning of the degree of substitution and thereby the final hydrogel properties. The successful methacrylation and degree of substitution were verified by H-1 NMR and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The influence of the degree of methacrylation on photo-rheology, mechanical stiffness, swelling degree and gel content was evaluated. Furthermore, favourable 3D printability, enzymatic degradability, biocompatibility, cell migration and proliferation were demonstrated giving promise for further applications in tissue engineering

    Electrospun nanofibers: From food to energy by engineered electrodes in microbial fuel cells

    Get PDF
    Microbial fuel cells (MFCs) are bio-electrochemical devices able to directly transduce chemical energy, entrapped in an organic mass named fuel, into electrical energy through the metabolic activity of specific bacteria. During the last years, the employment of bio-electrochemical devices to study the wastewater derived from the food industry has attracted great interest from the scientific community. In the present work, we demonstrate the capability of exoelectrogenic bacteria used in MFCs to catalyze the oxidation reaction of honey, employed as a fuel. With the main aim to increase the proliferation of microorganisms onto the anode, engineered electrodes are proposed. Polymeric nanofibers, based on polyethylene oxide (PEO-NFs), were directly electrospun onto carbon-based material (carbon paper, CP) to obtain an optimized composite anode. The crucial role played by the CP/PEO-NFs anodes was confirmed by the increased proliferation of microorganisms compared to that reached on bare CP anodes, used as a reference material. A parameter named recovered energy (Erec) was introduced to determine the capability of bacteria to oxidize honey and was compared with the Erec obtained when sodium acetate was used as a fuel. CP/PEO-NFs anodes allowed achieving an Erec three times higher than the one reached with a bare carbon-based anode
    • …
    corecore