290 research outputs found

    A Polarizing Dynamic by Center Cabinets? The Mechanism of Limited Contestation

    Get PDF
    What effect does the presence of a coalition of the ideological center have on polarization in party systems? Studies of party positioning demonstrate the impact of a party’s affiliation to the cabinet for its electoral campaigning. In addition, comparative studies of party systems analyzed the effects of the competitive situation between the coalition and the opposition on party competition dynamics. Nevertheless, the linkage between findings of both branches of literature is still missing. On the one hand, studies of party competition models generally focus on explaining party behavior and do not aggregate these insights. On the other hand, party system studies usually lack an analytical micro-foundation. Thus, we do not know the mechanism that drives a polity to the extreme. To find this missing link, we derive two potential explanations based on the spatial theory of party competition and Satori’s study of party systems: incumbent punishment and limited contestation. We elaborate these mechanisms with the help of an agent-based model. Then, we trace the effect of cabinet type back to the limited contestation between coalition parties. If the incumbent parties avoid contestation with each other, a center cabinet induces polarizing dynamics since the opposition then has no incentive for responsible office-seeking. Specific circumstances such as a polarized electorate and voters’ negative evaluation of the cabinet parties support this mechanism. Methodologically, our simulation study reveals three advantages of the agent-based modeling approach: (1) the uncovering of thus far implicit assumptions; (2) the possibility of analyzing causal dependencies within a complex and dynamic model; and (3) the precision of our theoretical expectations based on the micro-foundation

    It's no longer the economy, stupid! Issue yield at the 2017 German federal election

    Get PDF
    This article demonstrates that the issue-yield concept is able to predict the electoral strategies of mainstream and challenger parties at the 2017 German federal election. While the electorate of mainstream parties favour valence issues, the Greens and the AfD can gain more by concentrating on socio-cultural positional issues. Relying on a unique survey covering 17 positional issues and 10 valence issues as well as an analysis of Twitter accounts, the article shows that contemporary Germany is characterised by a centrifugal competition on the socio-cultural dimension. At the same time, an asymmetric ideological confrontation persists on the socio-economic dimension, because the Left and the SPD still refer to their traditional welfare issues while the bourgeois parties no longer counter this with a contrasting free-market ideology. Thus, the economy is currently not the decisive issue in German politics. Migration, integration, and other socio-cultural issues are rather driving electoral competition

    Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin

    Get PDF
    Nuclear protein aggregation has been linked to genome instability and disease. The main source of aggregation-prone proteins in cells is defective ribosomal products (DRiPs), which are generated by translating ribosomes in the cytoplasm. Here, we report that DRiPs rapidly diffuse into the nucleus and accumulate in nucleoli and PML bodies, two membraneless organelles formed by liquid\u2013liquid phase separation. We show that nucleoli and PML bodies act as dynamic overflow compartments that recruit protein quality control factors and store DRiPs for later clearance. Whereas nucleoli serve as constitutive overflow compartments, PML bodies are stress-inducible overflow compartments for DRiPs. If DRiPs are not properly cleared by chaperones and proteasomes due to proteostasis impairment, nucleoli undergo amyloidogenesis and PML bodies solidify. Solid PML bodies immobilize 20S proteasomes and limit the recycling of free ubiquitin. Ubiquitin depletion, in turn, compromises the formation of DNA repair compartments at fragile chromosomal sites, ultimately threatening cell survival

    Integrating the Genetic and Physical Maps of Arabidopsis thaliana: Identification of Mapped Alleles of Cloned Essential (EMB) Genes

    Get PDF
    The classical genetic map of Arabidopsis includes more than 130 genes with an embryo-defective (emb) mutant phenotype. Many of these essential genes remain to be cloned. Hundreds of additional EMB genes have been cloned and catalogued (www.seedgenes.org) but not mapped. To facilitate EMB gene identification and assess the current level of saturation, we updated the classical map, compared the physical and genetic locations of mapped loci, and performed allelism tests between mapped (but not cloned) and cloned (but not mapped) emb mutants with similar chromosome locations. Two hundred pairwise combinations of genes located on chromosomes 1 and 5 were tested and more than 1100 total crosses were screened. Sixteen of 51 mapped emb mutants examined were found to be disrupted in a known EMB gene. Alleles of a wide range of published EMB genes (YDA, GLA1, TIL1, AtASP38, AtDEK1, EMB506, DG1, OEP80) were discovered. Two EMS mutants isolated 30 years ago, T-DNA mutants with complex insertion sites, and a mutant with an atypical, embryo-specific phenotype were resolved. The frequency of allelism encountered was consistent with past estimates of 500 to 1000 EMB loci. New EMB genes identified among mapped T-DNA insertion mutants included CHC1, which is required for chromatin remodeling, and SHS1/AtBT1, which encodes a plastidial nucleotide transporter similar to the maize Brittle1 protein required for normal endosperm development. Two classical genetic markers (PY, ALB1) were identified based on similar map locations of known genes required for thiamine (THIC) and chlorophyll (PDE166) biosynthesis. The alignment of genetic and physical maps presented here should facilitate the continued analysis of essential genes in Arabidopsis and further characterization of a broad spectrum of mutant phenotypes in a model plant

    Small Heat Shock Proteins Potentiate Amyloid Dissolution by Protein Disaggregases from Yeast and Humans

    Get PDF
    The authors define how small heat-shock proteins synergize to regulate the assembly and disassembly of a beneficial prion, and then they exploit this knowledge to identify the human amyloid depolymerase

    Dust polarized emission observations of NGC 6334: BISTRO reveals the details of the complex but organized magnetic field structure of the high-mass star-forming hub-filament network

    Get PDF
    Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μm toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity (PI), the polarization fraction (PF), and the plane-of-The-sky B-field angle (χB_POS) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χBPOS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span 3 orders of magnitude in Stokes I and PI and 2 orders of magnitude in PF (from 0.2 to 20%). A large scatter in PI and PF is observed for a given value of I. Our analyses show a complex B-field structure when observed over the whole region ( 10 pc); however, at smaller scales (1 pc), χBPOS varies coherently along the crests of the filament network. The observed power spectrum of χBPOS can be well represented with a power law function with a slope of-1.33 ± 0.23, which is 20% shallower than that of I. We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χBPOS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density (NH2 â 1023 cm-2) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields

    The JCMT BISTRO-2 Survey: Magnetic Fields of the Massive DR21 Filament

    Get PDF
    We present 850 μm dust polarization observations of the massive DR21 filament from the B-fields In STar-forming Region Observations (BISTRO) survey, using the POL-2 polarimeter and the SCUBA-2 camera on the James Clerk Maxwell Telescope. We detect ordered magnetic fields perpendicular to the parsec-scale ridge of the DR21 main filament. In the subfilaments, the magnetic fields are mainly parallel to the filamentary structures and smoothly connect to the magnetic fields of the main filament. We compare the POL-2 and Planck dust polarization observations to study the magnetic field structures of the DR21 filament on 0.1-10 pc scales. The magnetic fields revealed in the Planck data are well-aligned with those of the POL-2 data, indicating a smooth variation of magnetic fields from large to small scales. The plane-of-sky magnetic field strengths derived from angular dispersion functions of dust polarization are 0.6-1.0 mG in the DR21 filament and ∼0.1 mG in the surrounding ambient gas. The mass-to-flux ratios are found to be magnetically supercritical in the filament and slightly subcritical to nearly critical in the ambient gas. The alignment between column density structures and magnetic fields changes from random alignment in the low-density ambient gas probed by Planck to mostly perpendicular in the high-density main filament probed by James Clerk Maxwell Telescope. The magnetic field structures of the DR21 filament are in agreement with MHD simulations of a strongly magnetized medium, suggesting that magnetic fields play an important role in shaping the DR21 main filament and subfilaments
    • …
    corecore