12 research outputs found

    Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities

    Get PDF
    Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections that lead to death in the majority of cases. The need to maintain lung function in these patients means that characterising these infections is vital. Increasingly, culture-independent analyses are expanding the number of bacterial species associated with CF respiratory samples; however, the potential significance of these species is not known. Here, we applied ecological statistical tools to such culture-independent data, in a novel manner, to partition taxa within the metacommunity into core and satellite species. Sputa and clinical data were obtained from 14 clinically stable adult CF patients. Fourteen rRNA gene libraries were constructed with 35 genera and 82 taxa, identified in 2139 bacterial clones. Shannon–Wiener and taxa-richness analyses confirmed no undersampling of bacterial diversity. By decomposing the distribution using the ratio of variance to the mean taxon abundance, we partitioned objectively the species abundance distribution into core and satellite species. The satellite group comprised 67 bacterial taxa from 33 genera and the core group, 15 taxa from 7 genera (including Pseudomonas (1 taxon), Streptococcus (2), Neisseria (2), Catonella (1), Porphyromonas (1), Prevotella (5) and Veillonella (3)], the last four being anaerobes). The core group was dominated by Pseudomonas aeruginosa. Other recognised CF pathogens were rare. Mantel and partial Mantel tests assessed which clinical factors influenced the composition observed. CF transmembrane conductance regulator genotype and antibiotic treatment correlated with all core taxa. Lung function correlated with richness. The clinical significance of these core and satellite species findings in the CF lung is discussed

    Assessing the diagnostic importance of nonviable bacterial cells in respiratory infections

    No full text
    Identification of bacteria in clinical samples is fundamental to combating infections. Modern molecular genetic approaches exploit nucleic acids signals from clinical samples. However, DNA-derived signals can originate from nonviable bacterial cells and, therefore, generate data that could be misinterpreted. Terminal restriction fragment length polymorphism profiling of cystic fibrosis sputum samples was combined with propidium monoazide (PMA) photo-induced cross-linking. PMA is highly membrane impermeant and is excluded from viable bacteria but readily penetrates dead cells. Exposure to a light source renders DNA in permeable cells incapable of contributing to polymerase chain reaction. PMA treatment was shown to effectively prevent dead bacteria, spiked into sputum samples, from contributing to profiles. Comparison of treated and untreated clinical samples indicated that dead bacterial cells significantly bias untreated profiles. These findings highlight the significant contribution that nonviable bacteria can make to DNA-based diagnostic analysis of clinical samples while providing a simple and effective means of avoiding such bias

    Comparative Analysis of Bacterial Community Composition and Structure in Clinically Symptomatic and Asymptomatic Central Venous Catheters

    No full text
    International audienceTotally implanted venous access ports (TIVAPs) are commonly used catheters for the management of acute or chronic pathologies. Although these devices improve health care, repeated use of this type of device for venous access over long periods of time is also associated with risk of colonization and infection by pathogenic bacteria, often originating from skin. However, although the skin microbiota is composed of both pathogenic and nonpathogenic bacteria, the extent and the consequences of TIVAP colonization by nonpathogenic bacteria have rarely been studied. Here, we used culture-dependent and 16S rRNA gene-based culture-independent approaches to identify differences in bacterial colonization of TIVAPs obtained from two French hospitals. To explore the relationships between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection, we analyzed the bacterial community parameters between TIVAPs suspected (symptomatic) or not (asymptomatic) of infection. Although we did not find a particular species assemblage or community marker to distinguish infection risk on an individual sample level, we identified differences in bacterial community composition, diversity, and structure between clinically symptomatic and asymptomatic TIVAPs that could be explored further. This study therefore provides a new view of bacterial communities and colonization patterns in intravascular TIVAPs and suggests that microbial ecology approaches could improve our understanding of device-associated infections and could be a prognostic tool to monitor the evolution of bacterial communities in implants and their potential susceptibility to infections. IMPORTANCE Totally implanted venous access ports (TIVAPs) are commonly used implants for the management of acute or chronic pathologies. Although their use improves the patient's health care and quality of life, they are associated with a risk of infection and subsequent clinical complications, often leading to implant removal. While all TIVAPs appear to be colonized, only a fraction become infected, and the relationship between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection is unknown. We explored bacteria present on TIVAPs implanted in patients with or without signs of TIVAP infection and identified differences in phylum composition and community structure. Our data suggest that the microbial ecology of intravascular devices could be predictive of TIVAP infection status and that ultimately a microbial ecological signature could be identified as a tool to predict TIVAP infection susceptibility and improve clinical management

    Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation?

    No full text
    Background: Cystic Fibrosis (CF) lung disease is characterised by an inexorable decline in lung function, punctuated by periods of symptomatic worsening known as pulmonary exacerbations (referred to here as CFPE). Despite their clinical significance, the cause of CFPE remains undetermined. It has been suggested that an increase in bacterial density may be a trigger, although this has not been shown empirically.Methods: here, a previously validated quantitative PCR-based approach was used to assess numbers of Pseudomonas aeruginosa and of total bacteria in respiratory secretions from patients during the period leading up to CFPE. Sputum samples collected from 12 adult CF patients were selected retrospectively to fall approximately 21, 14, 7 and 0 days prior to CFPE diagnosis. In addition, the relationships between clinical parameters (FEV(1), temperature and patient reported outcome measures) and microbiological data were investigated.Results: no significant changes either in total bacterial or P. aeruginosa numbers were identified prior to CFPE. Of all the correlations tested, only temperature showed a significant correlation with total bacterial numbers in the period leading to CFPE.Conclusions: these findings strongly suggest that CFPE do not generally result from increased bacterial density within the airways. Instead, data presented here are consistent with alternative models of pulmonary exacerbation.</p
    corecore