1,413 research outputs found

    Ablative brain surgery : an overview

    Get PDF
    Background: Ablative therapies have been used for the treatment of neurological disorders for many years. They have been used both for creating therapeutic lesions within dysfunctional brain circuits and to destroy intracranial tumors and space-occupying masses. Despite the introduction of new effective drugs and neuromodulative techniques, which became more popular and subsequently caused brain ablation techniques to fall out favor, recent technological advances have led to the resurgence of lesioning with an improved safety profile. Currently, the four main ablative techniques that are used for ablative brain surgery are radiofrequency thermoablation, stereotactic radiosurgery, laser interstitial thermal therapy and magnetic resonance-guided focused ultrasound thermal ablation. Object: To review the physical principles underlying brain ablative therapies and to describe their use for neurological disorders. Methods: The literature regarding the neurosurgical applications of brain ablative therapies has been reviewed. Results: Ablative treatments have been used for several neurological disorders, including movement disorders, psychiatric disorders, chronic pain, drug-resistant epilepsy and brain tumors. Conclusions: There are several ongoing efforts to use novel ablative therapies directed towards the brain. The recent development of techniques that allow for precise targeting, accurate delivery of thermal doses and real-time visualization of induced tissue damage during the procedure have resulted in novel techniques for cerebral ablation such as magnetic resonance-guided focused ultrasound or laser interstitial thermal therapy. However, older techniques such as radiofrequency thermal ablation or stereotactic radiosurgery still have a pivotal role in the management of a variety of neurological disorders

    Precision tests of the Standard Model with leptonic and semileptonic kaon decays

    Full text link
    We present a global analysis of leptonic and semileptonic kaon decays data, including all recent results by BNL-E865, KLOE, KTeV, ISTRA+, and NA48. Experimental results are critically reviewed and combined, taking into account theoretical (both analytical and numerical) constraints on the semileptonic kaon form factors. This analysis leads to a very accurate determination of Vus and allows us to perform several stringent tests of the Standard Model

    Precision Measurement of KS Meson Lifetime with the KLOE detector

    Get PDF
    Using a large sample of pure, slow, short lived K0 mesons collected with KLOE detector at DaFne, we have measured the KS lifetime. From a fit to the proper time distribution we find tau = (89.562 +- 0.029_stat +- 0.043_syst) ps. This is the most precise measurement today in good agreement with the world average derived from previous measurements. We observe no dependence of the lifetime on the direction of the Ks.Comment: 5 pages, 7 figure

    Measurement of the K_L \to \pi\mu\nu form factor parameters with the KLOE detector

    Full text link
    Using 328 pb^{-1}of data collected at DAFNE corresponding to ∼\sim 1.8 million KL→πμνK_L\to \pi\mu\nu decays, we have measured the Kμ3K_{\mu 3} form factor parameters. The structure of the K−πK-\pi vector-current provides information about the dynamics of the strong interaction; its knowledge is necessary for evaluation of the phase-space integral required for measuring the CKM matrix element VusV_{us} and for testing lepton universality in kaon decays. Using a new parametrization for the vector and scalar form factors, we find λ+\lambda_+=\pt(25.7\pm 0.6),-3, and λ0\lambda_0=\pt(14.0\pm 2.1),-3,. Our result for λ0\lambda_0, together with recent lattice calculations of fπf_\pi, fKf_K and f(0)f(0), satisfies the Callan-Trieman relatio

    Vus and lepton universality from kaon decays with the KLOE detector

    Get PDF
    KLOE has measured most decay branching ratios of Ks, Kl and K+/- mesons. It has also measured the Kl and the K+- lifetime and determined the shape of the form factors involved in kaon semileptonic decays. We present in the following a description of the above measurements and a well organized compendium of all of our data, with particular attention to correlations. These data provide the basis for the determination of the CKM parameter Vus and a test of the unitarity of the quark flavor mixing matrix. We also test lepton universality and place bounds on new physics using measurements of Vus from Kl2 and Kl3 decays.Comment: 23 pages, 12 figures. Submitted to JHE
    • …
    corecore